Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Eur J Neurosci ; 52(8): 3918-3928, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32464693

RESUMEN

Habenula neurons are constantly active. The level of activity affects mood and behaviour, with increased activity in the lateral habenula reflecting exposure to punishment and a switch to passive coping and depression. Here, we identify GABAergic neurons that could reduce activity in the lateral habenula of larval zebrafish. GAD65/67 immunohistochemistry and imaging of gad1b:DsRed transgenic fish suggest the presence of GABAergic terminals in the neuropil and between cell bodies in the lateral habenula. Retrograde tracing with the lipophilic dye DiD suggests that the former derives from the thalamus, while the latter originates from a group of cells in the posterior hypothalamus that are located between the posterior tuberal nucleus and hypothalamic lobes. Two-photon calcium imaging indicates that blue light causes excitation of thalamic GABAergic neurons and terminals in the neuropil, while a subpopulation of lateral habenula neurons show reduced intracellular calcium levels. Whole-cell electrophysiological recording indicates that blue light reduces membrane potential of lateral habenula neurons. These observations suggest that GABAergic input from the thalamus may mediate inhibition in the zebrafish lateral habenula. Mechanisms governing release of GABA from the neurons in the posterior hypothalamus, which are likely to be in the tuberomammillary nucleus, remain to be defined.


Asunto(s)
Habénula , Animales , Animales Modificados Genéticamente , Neuronas GABAérgicas , Tálamo , Pez Cebra
2.
J Neurogenet ; 30(2): 80-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27328843

RESUMEN

Neural circuits are non-linear dynamical systems that transform information based on the pattern of input, current state and functional connectivity. To understand how a given stimulus is processed, one would ideally record neural activity across the entire brain of a behaving animal, at cellular or even subcellular resolution, in addition to characterizing anatomical connectivity. Given their transparency and relatively small size, larval zebrafish provide a powerful system for brain-wide monitoring of neural activity. Genetically encoded calcium indicators have been used for this purpose, but cannot directly report hyperpolarization or sub-threshold activity. Voltage indicators, in contrast, have this capability. Here, we test whether two different genetically encoded voltage reporters, ASAP1 and Bongwoori, can be expressed and report activity in the zebrafish brain, using widefield, two-photon and light sheet microscopy. We were unable to express ASAP1 in neurons. Bongwoori, in contrast expressed well, and because of its membrane localization, allowed visualization of axon trajectories in 3D. Bongwoori displayed stimulus-evoked changes in fluorescence, which could be detected in single trials. However, under high laser illumination, puncta on neural membranes underwent spontaneous fluctuations in intensity, suggesting that the probe is susceptible to blinking artefacts. These data indicate that larval zebrafish can be used to image electrical activity in the brain of an intact vertebrate at high resolution, although care is needed in imaging and analysis. Recording activity across the whole brain will benefit from further developments in imaging hardware and indicators.


Asunto(s)
Conectoma/métodos , Indicadores y Reactivos , Neuronas/citología , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Procesamiento de Imagen Asistido por Computador/métodos , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA