Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 18(12): 2328-2343, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37949072

RESUMEN

Sus scrofa domesticus (pig) has served as a superb large mammalian model for biomedical studies because of its comparable physiology and organ size to humans. The derivation of transgene-free porcine induced pluripotent stem cells (PiPSCs) will, therefore, benefit the development of porcine-specific models for regenerative biology and its medical applications. In the past, this effort has been hampered by a lack of understanding of the signaling milieu that stabilizes the porcine pluripotent state in vitro. Here, we report that transgene-free PiPSCs can be efficiently derived from porcine fibroblasts by episomal vectors along with microRNA-302/367 using optimized protocols tailored for this species. PiPSCs can be differentiated into derivatives representing the primary germ layers in vitro and can form teratomas in immunocompromised mice. Furthermore, the transgene-free PiPSCs preserve intrinsic species-specific developmental timing in culture, known as developmental allochrony. This is demonstrated by establishing a porcine in vitro segmentation clock model that, for the first time, displays a specific periodicity at ∼3.7 h, a timescale recapitulating in vivo porcine somitogenesis. We conclude that the transgene-free PiPSCs can serve as a powerful tool for modeling development and disease and developing transplantation strategies. We also anticipate that they will provide insights into conserved and unique features on the regulations of mammalian pluripotency and developmental timing mechanisms.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Animales , Ratones , Porcinos , Reprogramación Celular , Diferenciación Celular , Transgenes , Mamíferos
2.
Front Cell Dev Biol ; 11: 1327227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38348091

RESUMEN

Somitogenesis is a hallmark feature of all vertebrates and some invertebrate species that involves the periodic formation of block-like structures called somites. Somites are transient embryonic segments that eventually establish the entire vertebral column. A highly conserved molecular oscillator called the segmentation clock underlies this periodic event and the pace of this clock regulates the pace of somite formation. Although conserved signaling pathways govern the clock in most vertebrates, the mechanisms underlying the species-specific divergence in various clock characteristics remain elusive. For example, the segmentation clock in classical model species such as zebrafish, chick, and mouse embryos tick with a periodicity of ∼30, ∼90, and ∼120 min respectively. This enables them to form the species-specific number of vertebrae during their overall timespan of somitogenesis. Here, we perform a systematic review of the species-specific features of the segmentation clock with a keen focus on mouse embryos. We perform this review using three different perspectives: Notch-responsive clock genes, ligand-receptor dynamics, and synchronization between neighboring oscillators. We further review reports that use non-classical model organisms and in vitro model systems that complement our current understanding of the segmentation clock. Our review highlights the importance of comparative developmental biology to further our understanding of this essential developmental process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA