Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Eur J Neurosci ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736372

RESUMEN

Neuropsychological studies have demonstrated that meningioma patients frequently exhibit cognitive deficits before surgery and show only limited improvement after surgery. Combining neuropsychological with functional imaging measurements can shed more light on the impact of surgery on cognitive brain function. We aimed to evaluate whether surgery affects cognitive brain activity in such a manner that it may mask possible changes in cognitive functioning measured by neuropsychological tests. Twenty-three meningioma patients participated in a fMRI measurement using a verbal working memory task as well as three neuropsychological tests focused on working memory, just before and 3 months after surgery. A region of interest based fMRI analysis was used to examine cognitive brain activity at these timepoints within the central executive network and default mode network. Neuropsychological assessment showed impaired cognitive functioning before as well as 3 months after surgery. Neuropsychological test scores, in-scanner task performance as well as brain activity within the central executive and default mode network were not significantly different between both timepoints. Our results indicate that surgery does not significantly affect cognitive brain activity in meningioma patients the first few months after surgery. Therefore, the lack of cognitive improvement after surgery is not likely the result of compensatory processes in the brain. Cognitive deficits that are already present before surgery appear to be persistent after surgery and a considerable recovery period. Our study shows potential leads that comprehensive cognitive evaluation can be of added value so that cognitive functioning may become a more prominent factor in clinical decision making.

2.
Sci Rep ; 14(1): 9617, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671062

RESUMEN

Brain-computer interfaces (BCIs) that reconstruct and synthesize speech using brain activity recorded with intracranial electrodes may pave the way toward novel communication interfaces for people who have lost their ability to speak, or who are at high risk of losing this ability, due to neurological disorders. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a man with impaired articulation due to ALS, participating in a clinical trial (ClinicalTrials.gov, NCT03567213) exploring different strategies for BCI communication. The 3-stage approach reported here relies on recurrent neural networks to identify, decode and synthesize speech from electrocorticographic (ECoG) signals acquired across motor, premotor and somatosensory cortices. We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the participant from a vocabulary of 6 keywords previously used for decoding commands to control a communication board. Evaluation of the intelligibility of the synthesized speech indicates that 80% of the words can be correctly recognized by human listeners. Our results show that a speech-impaired individual with ALS can use a chronically implanted BCI to reliably produce synthesized words while preserving the participant's voice profile, and provide further evidence for the stability of ECoG for speech-based BCIs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Habla , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/terapia , Masculino , Habla/fisiología , Persona de Mediana Edad , Electrodos Implantados , Electrocorticografía
3.
Adv Sci (Weinh) ; 10(35): e2304853, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37875404

RESUMEN

Brain-computer interfaces (BCIs) can be used to control assistive devices by patients with neurological disorders like amyotrophic lateral sclerosis (ALS) that limit speech and movement. For assistive control, it is desirable for BCI systems to be accurate and reliable, preferably with minimal setup time. In this study, a participant with severe dysarthria due to ALS operates computer applications with six intuitive speech commands via a chronic electrocorticographic (ECoG) implant over the ventral sensorimotor cortex. Speech commands are accurately detected and decoded (median accuracy: 90.59%) throughout a 3-month study period without model retraining or recalibration. Use of the BCI does not require exogenous timing cues, enabling the participant to issue self-paced commands at will. These results demonstrate that a chronically implanted ECoG-based speech BCI can reliably control assistive devices over long time periods with only initial model training and calibration, supporting the feasibility of unassisted home use.


Asunto(s)
Esclerosis Amiotrófica Lateral , Interfaces Cerebro-Computador , Humanos , Habla , Esclerosis Amiotrófica Lateral/complicaciones , Electrocorticografía
4.
Clin Neurophysiol ; 155: 1-15, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657190

RESUMEN

OBJECTIVE: Electrocorticography (ECoG)-based brain-computer interface (BCI) systems have the potential to improve quality of life of people with locked-in syndrome (LIS) by restoring their ability to communicate independently. Before implantation of such a system, it is important to localize ECoG electrode target regions. Here, we assessed the predictive value of functional magnetic resonance imaging (fMRI) for the localization of suitable target regions on the sensorimotor cortex for ECoG-based BCI in people with locked-in syndrome. METHODS: Three people with locked-in syndrome were implanted with a chronic, fully implantable ECoG-BCI system. We compared pre-surgical fMRI activity with post-implantation ECoG activity from areas known to be active and inactive during attempted hand movement (sensorimotor hand region and dorsolateral prefrontal cortex, respectively). RESULTS: Results showed a spatial match between fMRI activity and changes in ECoG low and high frequency band power (10 - 30 and 65 - 95 Hz, respectively) during attempted movement. Also, we found that fMRI can be used to select a sub-set of electrodes that show strong task-related signal changes that are therefore likely to generate adequate BCI control. CONCLUSIONS: Our findings indicate that fMRI is a useful non-invasive tool for the pre-surgical workup of BCI implant candidates. SIGNIFICANCE: If these results are confirmed in more BCI studies, fMRI might be used for more efficient surgical BCI procedures with focused cortical coverage and lower participant burden.

5.
Nature ; 620(7976): 954-955, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612488
6.
Neurol Sci ; 44(12): 4263-4289, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37606742

RESUMEN

BACKGROUND: Stroke causes alterations in the sensorimotor rhythms (SMRs) of the brain. However, little is known about the influence of lesion location on the SMRs. Understanding this relationship is relevant for the use of SMRs in assistive and rehabilitative therapies, such as Brain-Computer Interfaces (BCIs).. METHODS: We reviewed current evidence on the association between stroke lesion location and SMRs through systematically searching PubMed and Embase and generated a narrative synthesis of findings. RESULTS: We included 12 articles reporting on 161 patients. In resting-state studies, cortical and pontine damage were related to an overall decrease in alpha (∼8-12 Hz) and increase in delta (∼1-4 Hz) power. In movement paradigm studies, attenuated alpha and beta (∼15-25 Hz) event-related desynchronization (ERD) was shown in stroke patients during (attempted) paretic hand movement, compared to controls. Stronger reductions in alpha and beta ERD in the ipsilesional, compared to contralesional hemisphere, were observed for cortical lesions. Subcortical stroke was found to affect bilateral ERD and ERS, but results were highly variable. CONCLUSIONS: Findings suggest a link between stroke lesion location and SMR alterations, but heterogeneity across studies and limited lesion location descriptions precluded a meta-analysis. SIGNIFICANCE: Future research would benefit from more uniformly defined outcome measures, homogeneous methodologies, and improved lesion location reporting.


Asunto(s)
Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/patología , Encéfalo/patología , Movimiento/fisiología , Electroencefalografía
7.
J Neural Eng ; 20(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37467739

RESUMEN

Objective.Development of brain-computer interface (BCI) technology is key for enabling communication in individuals who have lost the faculty of speech due to severe motor paralysis. A BCI control strategy that is gaining attention employs speech decoding from neural data. Recent studies have shown that a combination of direct neural recordings and advanced computational models can provide promising results. Understanding which decoding strategies deliver best and directly applicable results is crucial for advancing the field.Approach.In this paper, we optimized and validated a decoding approach based on speech reconstruction directly from high-density electrocorticography recordings from sensorimotor cortex during a speech production task.Main results.We show that (1) dedicated machine learning optimization of reconstruction models is key for achieving the best reconstruction performance; (2) individual word decoding in reconstructed speech achieves 92%-100% accuracy (chance level is 8%); (3) direct reconstruction from sensorimotor brain activity produces intelligible speech.Significance.These results underline the need for model optimization in achieving best speech decoding results and highlight the potential that reconstruction-based speech decoding from sensorimotor cortex can offer for development of next-generation BCI technology for communication.


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje Profundo , Corteza Sensoriomotora , Humanos , Habla , Comunicación , Electrocorticografía/métodos
8.
medRxiv ; 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37425721

RESUMEN

Recent studies have shown that speech can be reconstructed and synthesized using only brain activity recorded with intracranial electrodes, but until now this has only been done using retrospective analyses of recordings from able-bodied patients temporarily implanted with electrodes for epilepsy surgery. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a clinical trial participant (ClinicalTrials.gov, NCT03567213) with dysarthria due to amyotrophic lateral sclerosis (ALS). We demonstrate a reliable BCI that synthesizes commands freely chosen and spoken by the user from a vocabulary of 6 keywords originally designed to allow intuitive selection of items on a communication board. Our results show for the first time that a speech-impaired individual with ALS can use a chronically implanted BCI to reliably produce synthesized words that are intelligible to human listeners while preserving the participants voice profile.

9.
J Neurointerv Surg ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524520

RESUMEN

In recent years, the majority of the population has become increasingly reliant on continuous and independent control of smart devices to conduct activities of daily living. Upper extremity movement is typically required to generate the motor outputs that control these interfaces, such as rapidly and accurately navigating and clicking a mouse, or activating a touch screen. For people living with tetraplegia, these abilities are lost, significantly compromising their ability to interact with their environment. Implantable brain computer interfaces (BCIs) hold promise for restoring lost neurologic function, including motor neuroprostheses (MNPs). An implantable MNP can directly infer motor intent by detecting brain signals and transmitting the motor signal out of the brain to generate a motor output and subsequently control computer actions. This physiological function is typically performed by the motor neurons in the human body. To evaluate the use of these implanted technologies, there is a need for an objective measurement of the effectiveness of MNPs in restoring motor outputs. Here, we propose the concept of digital motor outputs (DMOs) to address this: a motor output decoded directly from a neural recording during an attempted limb or orofacial movement is transformed into a command that controls an electronic device. Digital motor outputs are diverse and can be categorized as discrete or continuous representations of motor control, and the clinical utility of the control of a single, discrete DMO has been reported in multiple studies. This sets the stage for the DMO to emerge as a quantitative measure of MNP performance.

10.
Eur J Neurosci ; 57(8): 1260-1288, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36843389

RESUMEN

In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.


Asunto(s)
Electrocorticografía , Espacio Subdural , Animales , Electrocorticografía/métodos , Duramadre , Electrodos Implantados
11.
Disabil Rehabil Assist Technol ; 18(6): 963-973, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383613

RESUMEN

OBJECTIVES: The development of Brain-Computer Interfaces to restore communication (cBCIs) in people with severe motor impairment ideally relies on a close collaboration between end-users and other stakeholders, such as caregivers and researchers. Awareness about potential differences in opinion between these groups is crucial for development of usable cBCIs and access technology (AT) in general. In this study, we compared the opinions of prospective cBCI users, their caregivers and cBCI researchers regarding: (1) what applications would users like to control with a cBCI; (2) what mental strategies would users prefer to use for cBCI control; and (3) at what stage of their clinical trajectory would users like to be informed about AT and cBCIs. METHODS: We collected data from 28 individuals with locked-in syndrome, 29 of their caregivers and 28 cBCI researchers. The questionnaire was supported with animation videos to explain different cBCI concepts, the utility of which was also assessed. RESULTS: Opinions of the three groups were aligned with respect to the most desired cBCI applications, but diverged regarding mental strategies and the timing of being informed about cBCIs. Animation videos were regarded as clear and useful tools to explain cBCIs and mental strategies to end-users and other stakeholders. CONCLUSIONS: Disagreements were clear between stakeholders regarding which mental strategies users prefer to use and when they would like to be informed about cBCIs. To move forward in the development and clinical implementation of cBCIs, it will be necessary to align the research agendas with the needs of the end-users and caregivers.IMPLICATIONS FOR REHABILITATIONBrain-Computer Interfaces may offer people with severe motor impairment a brain-based and muscle-independent approach to control communication-technology. The successful development of communication BCIs (cBCIs) relies on a close collaboration between end-users and other stakeholders, such as caregivers and researchers.Our work reveals that people with locked-in syndrome (end-users), their caregivers and researchers developing cBCIs agree that direct and private forms of communication are the most desired cBCI applications, but disagree regarding the preferred mental strategies for cBCI control and when to be informed about cBCIs.Animation videos are an effective tool for providing information to individuals, independent of their level of health literacy, regarding the concept of cBCIs and mental strategies for control.The misalignment in opinions of different groups of stakeholders about cBCIs strengthens the argument for a user-centered design approach in the development of cBCIs and access technology designed for daily life usage.


Asunto(s)
Interfaces Cerebro-Computador , Síndrome de Enclaustramiento , Humanos , Cuidadores , Estudios Prospectivos , Comunicación
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 802-806, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085697

RESUMEN

Completely locked-in patients suffer from paralysis affecting every muscle in their body, reducing their communication means to brain-computer interfaces (BCIs). State-of-the-art BCIs have a slow spelling rate, which inevitably places a burden on patients' quality of life. Novel techniques address this problem by following a bio-mimetic approach, which consists of decoding sensory-motor cortex (SMC) activity that underlies the movements of the vocal tract's articulators. As recording articulatory data in combination with neural recordings is often unfeasible, the goal of this study was to develop an acoustic-to-articulatory inversion (AAI) model, i.e. an algorithm that generates articulatory data (speech gestures) from acoustics. A fully convolutional neural network was trained to solve the AAI mapping, and was tested on an unseen acoustic set, recorded simultaneously with neural data. Representational similarity analysis was then used to assess the relationship between predicted gestures and neural responses. The network's predictions and targets were significantly correlated. Moreover, SMC neural activity was correlated to the vocal tract gestural dynamics. The present AAI model has the potential to further our understanding of the relationship between neural, gestural and acoustic signals and lay the foundations for the development of a bio-mimetic speech BCI. Clinical Relevance- This study investigates the relationship between articulatory gestures during speech and the underlying neural activity. The topic is central for development of brain-computer interfaces for severely paralysed individuals.


Asunto(s)
Gestos , Habla , Acústica , Inversión Cromosómica , Humanos , Lenguaje , Parálisis , Calidad de Vida
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3100-3104, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085779

RESUMEN

Speech decoding from brain activity can enable development of brain-computer interfaces (BCIs) to restore naturalistic communication in paralyzed patients. Previous work has focused on development of decoding models from isolated speech data with a clean background and multiple repetitions of the material. In this study, we describe a novel approach to speech decoding that relies on a generative adversarial neural network (GAN) to reconstruct speech from brain data recorded during a naturalistic speech listening task (watching a movie). We compared the GAN-based approach, where reconstruction was done from the compressed latent representation of sound decoded from the brain, with several baseline models that reconstructed sound spectrogram directly. We show that the novel approach provides more accurate reconstructions compared to the baselines. These results underscore the potential of GAN models for speech decoding in naturalistic noisy environments and further advancing of BCIs for naturalistic communication. Clinical Relevance - This study presents a novel speech decoding paradigm that combines advances in deep learning, speech synthesis and neural engineering, and has the potential to advance the field of BCI for severely paralyzed individuals.


Asunto(s)
Interfaces Cerebro-Computador , Habla , Encéfalo , Comunicación , Humanos , Redes Neurales de la Computación
14.
Neurorehabil Neural Repair ; 36(10-11): 666-677, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36124975

RESUMEN

Implantable brain-computer interfaces (BCIs) promise to be a viable means to restore communication in individuals with locked-in syndrome (LIS). In 2016, we presented the world-first fully implantable BCI system that uses subdural electrocorticography electrodes to record brain signals and a subcutaneous amplifier to transmit the signals to the outside world, and that enabled an individual with LIS to communicate via a tablet computer by selecting icons in spelling software. For future clinical implementation of implantable communication-BCIs, however, much work is still needed, for example, to validate these systems in daily life settings with more participants, and to improve the speed of communication. We believe the design and execution of future studies on these and other topics may benefit from the experience we have gained. Therefore, based on relevant literature and our own experiences, we here provide an overview of procedures, as well as recommendations, for recruitment, screening, inclusion, imaging, hospital admission, implantation, training, and support of participants with LIS, for studies on daily life implementation of implantable communication-BCIs. With this article, we not only aim to inform the BCI community about important topics of concern, but also hope to contribute to improved methodological standardization of implantable BCI research.


Asunto(s)
Interfaces Cerebro-Computador , Síndrome de Enclaustramiento , Humanos , Comunicación , Encéfalo , Electroencefalografía
15.
Neurosci Biobehav Rev ; 140: 104801, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914625

RESUMEN

The neurobiological mechanisms underlying the effects of delta-9-tetrahydrocannabinol (THC) remain unclear. Here, we examined the spatial acute effect of THC on human regional brain activation or blood flow (hereafter called 'activation signal') in a 'core' network of brain regions from 372 participants, tested using a within-subject repeated measures design under experimental conditions. We also investigated whether the neuromodulatory effects of THC are related to the local expression of the cannabinoid-type-1 (CB1R) and type-2 (CB2R) receptors. Finally, we investigated the dose-response relationship between THC and key brain substrates. These meta-analytic findings shed new light on the localisation of the effects of THC in the human brain, suggesting that THC has neuromodulatory effects in regions central to many cognitive tasks and processes, related to dose, with greater effects in regions with higher levels of CB1R expression.


Asunto(s)
Encéfalo , Dronabinol , Expresión Génica , Humanos , Neuroimagen , Receptores de Cannabinoides , Análisis de Regresión
16.
J Neural Eng ; 19(4)2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35931055

RESUMEN

Objective. Implanted brain-computer interfaces (BCIs) employ neural signals to control a computer and may offer an alternative communication channel for people with locked-in syndrome (LIS). Promising results have been obtained using signals from the sensorimotor (SM) area. However, in earlier work on home-use of an electrocorticography (ECoG)-based BCI by people with LIS, we detected differences in ECoG-BCI performance, which were related to differences in the modulation of low frequency band (LFB) power in the SM area. For future clinical implementation of ECoG-BCIs, it will be crucial to determine whether reliable performance can be predicted before electrode implantation. To assess if non-invasive scalp-electroencephalography (EEG) could serve such prediction, we here investigated if EEG can detect the characteristics observed in the LFB modulation of ECoG signals.Approach. We included three participants with LIS of the earlier study, and a control group of 20 healthy participants. All participants performed a Rest task, and a Movement task involving actual (healthy) or attempted (LIS) hand movements, while their EEG signals were recorded.Main results.Data of the Rest task was used to determine signal-to-noise ratio, which showed a similar range for LIS and healthy participants. Using data of the Movement task, we selected seven EEG electrodes that showed a consistent movement-related decrease in beta power (13-30 Hz) across healthy participants. Within the EEG recordings of this subset of electrodes of two LIS participants, we recognized the phenomena reported earlier for the LFB in their ECoG recordings. Specifically, strong movement-related beta band suppression was observed in one, but not the other, LIS participant, and movement-related alpha band (8-12 Hz) suppression was practically absent in both. Results of the third LIS participant were inconclusive due to technical issues with the EEG recordings.Significance. Together, these findings support a potential role for scalp EEG in the presurgical assessment of ECoG-BCI candidates.


Asunto(s)
Interfaces Cerebro-Computador , Electrocorticografía , Electrocorticografía/métodos , Electroencefalografía/métodos , Humanos , Movimiento , Cuero Cabelludo
17.
J Neurosci ; 42(40): 7562-7580, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35999054

RESUMEN

Neural responses to visual stimuli exhibit complex temporal dynamics, including subadditive temporal summation, response reduction with repeated or sustained stimuli (adaptation), and slower dynamics at low contrast. These phenomena are often studied independently. Here, we demonstrate these phenomena within the same experiment and model the underlying neural computations with a single computational model. We extracted time-varying responses from electrocorticographic recordings from patients presented with stimuli that varied in duration, interstimulus interval (ISI) and contrast. Aggregating data across patients from both sexes yielded 98 electrodes with robust visual responses, covering both earlier (V1-V3) and higher-order (V3a/b, LO, TO, IPS) retinotopic maps. In all regions, the temporal dynamics of neural responses exhibit several nonlinear features. Peak response amplitude saturates with high contrast and longer stimulus durations, the response to a second stimulus is suppressed for short ISIs and recovers for longer ISIs, and response latency decreases with increasing contrast. These features are accurately captured by a computational model composed of a small set of canonical neuronal operations, that is, linear filtering, rectification, exponentiation, and a delayed divisive normalization. We find that an increased normalization term captures both contrast- and adaptation-related response reductions, suggesting potentially shared underlying mechanisms. We additionally demonstrate both changes and invariance in temporal response dynamics between earlier and higher-order visual areas. Together, our results reveal the presence of a wide range of temporal and contrast-dependent neuronal dynamics in the human visual cortex and demonstrate that a simple model captures these dynamics at millisecond resolution.SIGNIFICANCE STATEMENT Sensory inputs and neural responses change continuously over time. It is especially challenging to understand a system that has both dynamic inputs and outputs. Here, we use a computational modeling approach that specifies computations to convert a time-varying input stimulus to a neural response time course, and we use this to predict neural activity measured in the human visual cortex. We show that this computational model predicts a wide variety of complex neural response shapes, which we induced experimentally by manipulating the duration, repetition, and contrast of visual stimuli. By comparing data and model predictions, we uncover systematic properties of temporal dynamics of neural signals, allowing us to better understand how the brain processes dynamic sensory information.


Asunto(s)
Encéfalo , Corteza Visual , Masculino , Femenino , Humanos , Estimulación Luminosa/métodos , Encéfalo/fisiología , Mapeo Encefálico/métodos , Factores de Tiempo , Corteza Visual/fisiología
18.
Neuroimage ; 260: 119438, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35792291

RESUMEN

Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.


Asunto(s)
Electrocorticografía , Electroencefalografía , Encéfalo/fisiología , Mapeo Encefálico/métodos , Electrocorticografía/métodos , Electrodos , Electroencefalografía/métodos , Humanos
19.
PLoS Comput Biol ; 18(4): e1009955, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377877

RESUMEN

For cortical motor activity, the relationships between different body part representations is unknown. Through reciprocal body part relationships, functionality of cortical motor areas with respect to whole body motor control can be characterized. In the current study, we investigate the relationship between body part representations within individual neuronal populations in motor cortices, following a 7 Tesla fMRI 18-body-part motor experiment in combination with our newly developed non-rigid population Response Field (pRF) model and graph theory. The non-rigid pRF metrics reveal somatotopic structures in all included motor cortices covering frontal, parietal, medial and insular cortices and that neuronal populations in primary sensorimotor cortex respond to fewer body parts than secondary motor cortices. Reciprocal body part relationships are estimated in terms of uniqueness, clique-formation, and influence. We report unique response profiles for the knee, a clique of body parts surrounding the ring finger, and a central role for the shoulder and wrist. These results reveal associations among body parts from the perspective of the central nervous system, while being in agreement with intuitive notions of body part usage.


Asunto(s)
Corteza Motora , Mapeo Encefálico/métodos , Dedos , Cuerpo Humano , Humanos , Imagen por Resonancia Magnética/métodos , Corteza Motora/fisiología
20.
Sci Data ; 9(1): 91, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314718

RESUMEN

Intracranial human recordings are a valuable and rare resource of information about the brain. Making such data publicly available not only helps tackle reproducibility issues in science, it helps make more use of these valuable data. This is especially true for data collected using naturalistic tasks. Here, we describe a dataset collected from a large group of human subjects while they watched a short audiovisual film. The dataset has several unique features. First, it includes a large amount of intracranial electroencephalography (iEEG) data (51 participants, age range of 5-55 years, who all performed the same task). Second, it includes functional magnetic resonance imaging (fMRI) recordings (30 participants, age range of 7-47) during the same task. Eighteen participants performed both iEEG and fMRI versions of the task, non-simultaneously. Third, the data were acquired using a rich audiovisual stimulus, for which we provide detailed speech and video annotations. This dataset can be used to study neural mechanisms of multimodal perception and language comprehension, and similarity of neural signals across brain recording modalities.


Asunto(s)
Electrocorticografía , Imagen por Resonancia Magnética , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Niño , Preescolar , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Habla , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA