Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Cell Dev Biol ; 12: 1429020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050889

RESUMEN

The adult mammalian cardiomyocyte has a limited capacity for self-renewal, which leads to the irreversible heart dysfunction and poses a significant threat to myocardial infarction patients. In the past decades, research efforts have been predominantly concentrated on the cardiomyocyte proliferation and heart regeneration. However, the heart is a complex organ that comprises not only cardiomyocytes but also numerous noncardiomyocyte cells, all playing integral roles in maintaining cardiac function. In addition, cardiomyocytes are exposed to a dynamically changing physical environment that includes oxygen saturation and mechanical forces. Recently, a growing number of studies on myocardial microenvironment in cardiomyocyte proliferation and heart regeneration is ongoing. In this review, we provide an overview of recent advances in myocardial microenvironment, which plays an important role in cardiomyocyte proliferation and heart regeneration.

2.
Cardiovasc Res ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836630

RESUMEN

AIMS: Abdominal aortic aneurysm (AAA) represents a life-threatening condition characterized by medial layer degeneration of the abdominal aorta. Nevertheless, knowledge regarding changes in regulators associated with aortic status remains incomplete. A thorough understanding of cell types and signaling pathways involved in the development and progression of AAAs is essential for the development of medical therapy. METHODS AND RESULTS: We harvested specimens of the abdominal aorta with different pathological features in Angiotensin II (AngII)-infused ApoE-/- mice, conducted scRNA-seq, identified a unique population of interferon-inducible monocytes/macrophages (IFNICs), which were amply found in the abdominal aortic aneurysms (AAAs). Gene set variation analysis (GSVA) revealed that activation of the cytosolic DNA sensing cGAS-STING and JAK-STAT pathways promoted the secretion of type I interferons in monocytes/macrophages and differentiated them into IFNICs. We generated myeloid cell-specific deletion of Sting1 (Lyz2-Cre+/-; Sting1flox/flox) mice and performed bone marrow transplantation and found that myeloid cell-specific deletion of Sting1 or Ifnar1 significantly reduced the incidence of AAA, aortic rupture rate and diameter of the abdominal aorta. Mechanistically, the activated pyroptosis- and inflammation-related signaling pathways, regulated by IRF7 in IFNICs, play critical roles in the developing AAAs. CONCLUSION: IFNICs is a unique monocyte/macrophage subset implicated in the development of AAAs and aortic rupture.

3.
Transplantation ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578698

RESUMEN

BACKGROUND: Donation after circulatory death (DCD) heart transplantation (HTx) significantly expands the donor pool and reduces waitlist mortality. However, high-level evidence-based data on its safety and effectiveness are lacking. This meta-analysis aimed to compare the outcomes between DCD and donation after brain death (DBD) HTxs. METHODS: Databases, including MEDLINE, Embase, CINAHL, and the Cochrane Central Register of Controlled Trials, were systematically searched for randomized controlled trials and observational studies reporting the outcomes of DCD and DBD HTxs published from 2014 onward. The data were pooled using random-effects models. Risk ratios (RRs) with 95% confidence intervals (CIs) were used as the summary measures for categorical outcomes and mean differences were used for continuous outcomes. RESULTS: Twelve eligible studies were included in the meta-analysis. DCD HTx was associated with lower 1-y mortality rate (DCD 8.13% versus DBD 10.24%; RR = 0.75; 95% CI, 0.59-0.96; P = 0.02) and 5-y mortality rate (DCD 14.61% versus DBD 20.57%; RR = 0.72; 95% CI, 0.54-0.97; P = 0.03) compared with DBD HTx. CONCLUSIONS: Using the current DCD criteria, HTx emerges as a promising alternative to DBD transplantation. The safety and feasibility of DCD hearts deserve further exploration and investigation.

4.
Sci Immunol ; 9(94): eadh0085, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669317

RESUMEN

Thymic negative selection of the T cell receptor (TCR) repertoire is essential for establishing self-tolerance and acquired allograft tolerance following organ transplantation. However, it is unclear whether and how peripheral clonal deletion of alloreactive T cells induces transplantation tolerance. Here, we establish that programmed cell death protein 1 (PD-1) is a hallmark of alloreactive T cells and is associated with clonal expansion after alloantigen encounter. Moreover, we found that diphtheria toxin receptor (DTR)-mediated ablation of PD-1+ cells reshaped the TCR repertoire through peripheral clonal deletion of alloreactive T cells and promoted tolerance in mouse transplantation models. In addition, by using PD-1-specific depleting antibodies, we found that antibody-mediated depletion of PD-1+ cells prevented heart transplant rejection and the development of experimental autoimmune encephalomyelitis (EAE) in humanized PD-1 mice. Thus, these data suggest that PD-1 is an attractive target for peripheral clonal deletion and induction of immune tolerance.


Asunto(s)
Supresión Clonal , Tolerancia Inmunológica , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1 , Animales , Receptor de Muerte Celular Programada 1/inmunología , Ratones , Supresión Clonal/inmunología , Tolerancia Inmunológica/inmunología , Humanos , Encefalomielitis Autoinmune Experimental/inmunología , Trasplante de Corazón , Linfocitos T/inmunología , Ratones Noqueados , Ratones Endogámicos BALB C , Femenino
5.
Transplantation ; 108(5): 1127-1141, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38238904

RESUMEN

BACKGROUND: Emerging evidence has highlighted the role of macrophages in heart transplant rejection (HTR). However, the molecular signals modulating the immunometabolic phenotype of allograft-infiltrating macrophages (AIMs) during HTR remain unknown. METHODS: We analyzed single-cell RNA sequencing data from cardiac graft-infiltrating immunocytes to characterize the activation patterns and metabolic features of AIMs. We used flow cytometry to determine iNOS and PKM2 expression and MEK/ERK signaling activation levels in AIMs. We then generated macrophage-specific Mek1/2 knockout mice to determine the role of the MEK1/2-PKM2 pathway in the proinflammatory phenotype and glycolytic capacity of AIMs during HTR. RESULTS: Single-cell RNA sequencing analysis showed that AIMs had a significantly elevated proinflammatory and glycolytic phenotype. Flow cytometry analysis verified that iNOS and PKM2 expressions were significantly upregulated in AIMs. Moreover, MEK/ERK signaling was activated in AIMs and positively correlated with proinflammatory and glycolytic signatures. Macrophage-specific Mek1/2 deletion significantly protected chronic cardiac allograft rejection and inhibited the proinflammatory phenotype and glycolytic capacity of AIMs. Mek1/2 ablation also reduced the proinflammatory phenotype and glycolytic capacity of lipopolysaccharides + interferon-γ-stimulated macrophages. Mek1/2 ablation impaired nuclear translocation and PKM2 expression in macrophages. PKM2 overexpression partially restored the proinflammatory phenotype and glycolytic capacity of Mek1/2 -deficient macrophages. Moreover, trametinib, an Food and Drug Administration-approved MEK1/2 inhibitor, ameliorated chronic cardiac allograft rejection. CONCLUSIONS: These findings suggest that the MEK1/2-PKM2 pathway is essential for immunometabolic reprogramming of proinflammatory AIMs, implying that it may be a promising therapeutic target in clinical heart transplantation.


Asunto(s)
Rechazo de Injerto , Trasplante de Corazón , MAP Quinasa Quinasa 1 , MAP Quinasa Quinasa 2 , Macrófagos , Ratones Noqueados , Animales , Trasplante de Corazón/efectos adversos , Rechazo de Injerto/inmunología , Rechazo de Injerto/metabolismo , Rechazo de Injerto/patología , Rechazo de Injerto/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , MAP Quinasa Quinasa 2/metabolismo , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 1/genética , Proteínas de Unión a Hormona Tiroide , Ratones Endogámicos C57BL , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Masculino , Transducción de Señal , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Glucólisis , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Modelos Animales de Enfermedad , Fenotipo , Aloinjertos
6.
Front Immunol ; 14: 1314123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155961

RESUMEN

The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.


Asunto(s)
Lupus Eritematoso Sistémico , Esclerosis Múltiple , Humanos , Inmunidad Innata , Hígado , Inmunidad Adaptativa , Lupus Eritematoso Sistémico/terapia
7.
Cell Mol Immunol ; 20(12): 1445-1456, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37932534

RESUMEN

Immune checkpoint blockade (ICB), including anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4), benefits only a limited number of patients with cancer. Understanding the in-depth regulatory mechanism of CTLA-4 protein stability and its functional significance may help identify ICB resistance mechanisms and assist in the development of novel immunotherapeutic modalities to improve ICB efficacy. Here, we identified that TNF receptor-associated factor 6 (TRAF6) mediates Lys63-linked ubiquitination and subsequent lysosomal degradation of CTLA-4. Moreover, by using TRAF6-deficient mice and retroviral overexpression experiments, we demonstrated that TRAF6 promotes CTLA-4 degradation in a T-cell-intrinsic manner, which is dependent on the RING domain of TRAF6. This intrinsic regulatory mechanism contributes to CD8+ T-cell-mediated antitumor immunity in vivo. Additionally, by using an OX40 agonist, we demonstrated that the OX40-TRAF6 axis is responsible for CTLA-4 degradation, thereby controlling antitumor immunity in both tumor-bearing mice and patients with cancer. Overall, our findings demonstrate that the OX40-TRAF6 axis promotes CTLA-4 degradation and is a potential therapeutic target for the improvement of T-cell-based immunotherapies.


Asunto(s)
Neoplasias , Factor 6 Asociado a Receptor de TNF , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Antígeno CTLA-4 , Inmunoterapia
8.
J Heart Lung Transplant ; 42(11): 1608-1620, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37495036

RESUMEN

BACKGROUND: One-carbon metabolism supports the activation, proliferation, and function of multiple immune cells. However, researchers have not clearly determined whether and how one-carbon metabolic enzymes contribute to heart transplant rejection. METHODS: We investigated the dynamic metabolic adaptation in grafts during heart transplant rejection by conducting transcriptomics, metabolomics and single-cell RNA sequencing studies of cardiac tissue from human and mouse heart transplant recipients. We also assessed the expression of the one-carbon metabolic enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) in cardiac grafts by immunofluorescence and flow cytometry assays. Then we constructed a murine heart transplant model with T cell-specific Mthfd2 knockout mice, analyzed T cells function by flow cytometry assays and enzyme-linked immunospot assays, and studied the mechanism by Cleavage Under Targets and Tagmentation assays. Finally, we studied the effect of a pharmacological inhibitor of MTHFD2 in humanized skin transplant model. RESULTS: We revealed that the one-carbon metabolism enzyme MTHFD2 was a hallmark of alloreactive T cells and was linked to T cell proliferation and function after exposure to alloantigen. And, Mthfd2 ablation prevented murine heart transplant rejection. Mechanistically, we found Mthfd2 ablation affected the interferon regulatory factor 4/programmed death-1 pathway through a metabolic-epigenetic mechanism involving H3K4me3. Furthermore, we found that inhibiting MTHFD2 attenuated human allograft rejection in a humanized skin transplant model. CONCLUSIONS: These data show that the one-carbon metabolic enzyme MTHFD2 serves as a metabolic checkpoint of alloreactive T cells and suggest that it may be a potential therapeutic target for heart transplant rejection.

9.
Circulation ; 148(4): 336-353, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37232170

RESUMEN

BACKGROUND: PCSK9 (proprotein convertase subtilisin/kexin 9), which is mainly secreted by the liver, is not only a therapeutic target for hyperlipidemia and cardiovascular disease, but also has been implicated in the immune regulation of infections and tumors. However, the role of PCSK9 and the liver in heart transplant rejection (HTR) and the underlying mechanisms remain unclear. METHODS: We assessed serum PCSK9 expression in both murine and human recipients during HTR and investigated the effect of PCSK9 ablation on HTR by using global knockout mice and a neutralizing antibody. Moreover, we performed multiorgan histological and transcriptome analyses, and multiomics and single-cell RNA-sequencing studies of the liver during HTR, as well. We further used hepatocyte-specific Pcsk9 knockout mice to investigate whether the liver regulated HTR through PCSK9. Last, we explored the regulatory effect of the PCSK9/CD36 pathway on the phenotype and function of macrophages in vitro and in vivo. RESULTS: Here, we report that murine and human recipients have high serum PCSK9 levels during HTR. PCSK9 ablation prolonged cardiac allograft survival and attenuated the infiltration of inflammatory cells in the graft and the expansion of alloreactive T cells in the spleen. Next, we demonstrated that PCSK9 was mainly produced and significantly upregulated in the recipient liver, which also showed a series of signaling changes, including changes in the TNF-α (tumor necrosis factor α) and IFN-γ (interferon γ) signaling pathways and the bile acid and fatty acid metabolism pathways. We found mechanistically that TNF-α and IFN-γ synergistically promoted PCSK9 expression in hepatocytes through the transcription factor SREBP2 (sterol regulatory element binding protein 2). Moreover, in vitro and in vivo studies indicated that PCSK9 inhibited CD36 expression and fatty acid uptake by macrophages and strengthened the proinflammatory phenotype, which facilitated their ability to promote proliferation and IFN-γ production by donor-reactive T cells. Last, we found that the protective effect of PCSK9 ablation against HTR is dependent on the CD36 pathway in the recipient. CONCLUSIONS: This study reveals a novel mechanism for immune regulation by the liver through the PCSK9/CD36 pathway during HTR, which influences the phenotype and function of macrophages and suggests that the modulation of this pathway may be a potential therapeutic target to prevent HTR.


Asunto(s)
Trasplante de Corazón , Proproteína Convertasa 9 , Humanos , Ratones , Animales , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células Hep G2 , Hígado/metabolismo , Ácidos Grasos/metabolismo , Ratones Noqueados , Trasplante de Corazón/efectos adversos , Receptores de LDL/genética
10.
Front Immunol ; 14: 1295523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239344

RESUMEN

Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA