Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(19): 13719-13727, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36137535

RESUMEN

Carbon black (CB) is a nanomaterial with numerous industrial applications and high potential for integration into nano-enabled water treatment devices. However, few analytical techniques are capable of measuring CB in water at environmentally relevant concentrations. Therefore, we intended to establish a quantification method for CB with lower detection limits through utilization of trace metal impurities as analytical tracers. Various metal impurities were investigated in six commercial CB materials, and the Monarch 1000 CB was chosen as a model for further testing. The La impurity was chosen as a tracer for spICP-MS analysis based on measured concentration, low detection limits, and lack of polyatomic interferences. CB stability in water and adhesion to the spICP-MS introduction system presented a challenge that was mitigated by the addition of a nonionic surfactant to the matrix. Following optimization, the limit of detection (64 µg/L) and quantification (122 µg/L) for Monarch 1000 CB demonstrated the applicability of this approach to samples expected to contain trace amounts of CB. When compared against gravimetric analysis and UV-visible absorption spectroscopy, spICP-MS quantification exhibited similar sensitivity but with the ability to detect concentrations an order of magnitude lower. Method detection and sensitivity was unaffected when dissolved La was spiked into CB samples at environmentally relevant concentrations. Additionally, a more complex synthetic matrix representative of drinking water caused no appreciable impact to CB quantification. In comparison to existing quantification techniques, this method has achieved competitive sensitivity, a wide working range for quantification, and high selectivity for tracing possible release of CB materials with known metal contents.


Asunto(s)
Agua Potable , Hollín , Espectrometría de Masas/métodos , Metales , Tamaño de la Partícula , Tensoactivos
2.
SN Appl Sci ; 5: 1-12, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37383926

RESUMEN

Fused filament fabrication is a 3D printing technique that has gained widespread use from homes to schools to workplaces. Thermoplastic filaments, such as acrylonitrile-butadiene-styrene (ABS) and polylactic acid (PLA), are extruded at temperatures near their respective glass transition temperature or melting point, respectively. Little has been reported on the inorganic elemental composition and concentrations present in these materials or the methods available for extracting that information. Because inorganic constituents may be included in the aerosolized particulates emitted during the printing process, identifying elements that could be present and at what specific concentrations is critical. The objective of the current research is to determine the range of metals present in thermoplastic filaments along with their relative abundance and chemical speciation as a function of polymer type, manufacturer, and color. A variety of filaments from select manufacturers were digested using a range of techniques to determine the optimal conditions for metal extraction from ABS and PLA polymers. The extraction potential for each method was quantified using by ICP-MS analysis. When possible, further characterization of the chemical composition of the filaments was investigated using X-ray Absorption spectroscopy to determine chemical speciation of the metal. Optimal digestion conditions were established using a high temperature, high pressure microwave-assisted acid digestion method to produce the most complete and repeatable extraction results. The composition and abundance of metals in the filaments varied greatly as a function of polymer, manufacturer, and color. Potential elements of concern present in the filaments at elevated concentration included that could pose a respiratory risk included Si, Al, Ti, Cu, Zn, and Sn. XAS analysis revealed a mixture of metal oxides, mineral, and organometallic compounds were present in the filaments that were being used to increase opaqueness impart color (dyes), polymeric catalysts, and flame retardants. This work shows that a variety of metals are present in the starting materials used for 3D printing and depending on their partitioning into 3D printed products and byproducts as well as the exposure route, may pose a health risk which merits further investigation.

3.
Sci Total Environ ; 743: 140845, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758854

RESUMEN

Detection of metal nanoparticles (NPs) in the environment is an analytical challenge of interest due to increasing use of nanomaterials in consumer and industrial products. Detecting NPs associated with human activities is affected by both the magnitude and variation in background concentrations of natural NPs. In this work, we investigated the potential release of titanium dioxide (TiO2) NPs from sunscreen in three recreational rivers, with a time-intensive sampling regime on one river, in order to determine the range and variability of natural, background titania (Ti). Conventional ICP analysis for total metal concentrations, single particle ICP-MS for NP concentrations, and electron microscopy aided in assessing mineralogical morphology and composition. Oxybenzone, a widely-used organic sunscreen, was measured and used as a surrogate for the intensity of recreational activity in the water. Statistically significant increases in Ti concentrations were observed in Clear Creek, CO during one recreation period, but the significance of other instances of recreation-associated Ti increases was unclear, in part due to storm impacts on the natural suspended sediment load of the stream. A comparison of three recreational rivers showed increases in both Ti mass concentrations and NP sizes occur during recreation in both Clear Creek, CO and the Salt River, AZ, but no detectable changes in the Truckee River, NV. However, size distributions were variable in background samples, which make the significance of differences observed during recreation unclear. These results underline that the release of engineered nanoparticles to a natural system cannot be detected without a well-defined background, including measures of its variability during the study period.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Contaminantes Químicos del Agua/análisis , Humanos , Ríos , Protectores Solares/análisis , Titanio/análisis
4.
Environ Sci Technol ; 53(19): 11214-11222, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31448904

RESUMEN

Acid mine drainage (AMD) produces nanoparticulate Fe oxides and sorbed toxic metals, such as Cu and Zn. As an indirect product of human activity, these Fe oxides can be classified as incidental nanoparticles (INPs) and their colloidal aggregates. Research in nanoparticle fate and transport has advanced with the development of single particle inductively coupled plasma-mass spectrometry (spICP-MS), but AMD INPs have received little attention. We examined the characteristics and abundance of Fe oxide INPs in an AMD-impacted stream over the first 6 months of remediation. Fe and Cu INP concentrations were approximately 107 and 105 particles mL-1, before and after treatment, respectively. Overall, ∼4 Cu-containing INPs were counted for every 100 Fe-containing INPs. We also studied surface chemistry changes during the treatment period using hematite, a model Fe INP, suspended in filtered field waters. Changes in zeta potential and INP size, measured by dynamic light scattering, support that the contaminated stream chemistry (low pH, high ionic strength) promoted rapid aggregation while improved water quality favored stability. However, the water chemistry and INP stability during snowmelt were additionally impacted by electrolyte dilution, the addition of dissolved organic matter, and physical scouring. By linking field measurements to laboratory experiments, this work explores the effects of surface chemistry on AMD-generated INP behavior before and during remediation in a hydrologically dynamic alpine stream. To our knowledge, this is the first investigation of remediation effects on AMD INPs and the first use of spICP-MS as a technique to measure them.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Compuestos Férricos , Minería , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA