Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(6): 503, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700640

RESUMEN

Soil fertility (SF) is a crucial factor that directly impacts the performance and quality of crop production. To investigate the SF status in agricultural lands of winter wheat in Khuzestan province, 811 samples were collected from the soil surface (0-25 cm). Eleven soil properties, i.e., electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN), calcium carbonate equivalent (CCE), available phosphorus (Pav), exchangeable potassium (Kex), iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), and soil pH, were measured in the samples. The Nutrient Index Value (NIV) was calculated based on wheat nutritional requirements. The results indicated that 100%, 93%, and 74% of the study areas for CCE, pH, and EC fell into the low, moderate, and moderate to high NIV classes, respectively. Also, 25% of the area is classified as low fertility (NIV < 1.67), 75% falls under medium fertility (1.67 < NIV value < 2.33), and none in high fertility (NIV value > 2.33). Assessment of the mean wheat yield (AWY) and its comparison with NIV showed that the highest yield was in the Ramhormoz region (5200 kg.ha-1), while the lowest yield was in the Hendijan region (3000 kg.ha-1) with the lowest EC rate in the study area. Elevated levels of salinity and CCE in soils had the most negative impact on irrigated WY, while Pav, TN, and Mn availability showed significant effects on crop production. Therefore, implementing SF management practices is essential for both quantitative and qualitative improvement in irrigated wheat production in Khuzestan province.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno , Fósforo , Suelo , Triticum , Suelo/química , Nitrógeno/análisis , Fósforo/análisis , Fertilizantes/análisis , Agricultura/métodos , Nutrientes/análisis , Carbono/análisis
2.
Environ Monit Assess ; 191(8): 481, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273539

RESUMEN

This study presents a new fusion method namely supervised cross-fusion method to improve the capability of fused thermal, radar, and optical images for classification. The proposed cross-fusion method is a combination of pixel-based and supervised feature-based fusion of thermal, radar, and optical data. The pixel-based fusion was applied to fuse optical data of Sentinel-2 and Landsat 8. According to correlation coefficient (CR) and signal to noise ratio (SNR), among the used pixel-based fusion methods, wavelet obtained the best results for fusion. Considering spectral and spatial information preservation, CR of the wavelet method is 0.97 and 0.96, respectively. The supervised feature-based fusion method is a fusion of best output of pixel-based fusion level, land surface temperature (LST) data, and Sentinel-1 radar image using a supervised approach. The supervised approach is a supervised feature selection and learning of the inputs based on linear discriminant analysis and sparse regularization (LDASR) algorithm. In the present study, the non-negative matrix factorization (NMF) was utilized for feature extraction. A comparison of the obtained results with state of the art fusion method indicated a higher accuracy of our proposed method of classification. The rotation forest (RoF) classification results improvement was 25% and the support vector machine (SVM) results improvement was 31%. The results showed that the proposed method is well classified and separated four main classes of settlements, barren land, river, river bank, and even the bridges over the river. Also, a number of unclassified pixels by SVM are very low compared to other classification methods and can be neglected. The study results showed that LST calculated using thermal data has had positive effects on improving the classification results. By comparing the results of supervised cross-fusion without using LST data to the proposed method results, SVM and RoF classifiers showed 38% and 7% of classification improvement, respectively.


Asunto(s)
Monitoreo del Ambiente/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Irán , Radar , Ríos , Máquina de Vectores de Soporte , Temperatura
3.
Environ Sci Pollut Res Int ; 26(16): 16026-16039, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30968297

RESUMEN

Recent efforts to aggregate, process, and use biodiversity information have appended novel opportunities and challenges for the field, and a rapid increase in studies that integrate and analyze data in the biological-ecological realm. We developed a web-based GIS system for the wildlife of Khouzestan Province that provides potential distribution maps and other spatial and nonspatial data on the wildlife of Khouzestan Province and its protected areas. We used MaxEnt and a fuzzy inference system to model distributions of species. Our application was structured using a client/server architecture, and the database design and construction was carried out using PostgreSQL/PostGIS, and GeoServer to serve maps. The mapping interface was developed using OpenLayers; ASP.NET was selected for designing the user interface. We used qualitative-quantitative methods to develop, design, refine, and finalize our system particularly as regards usability. The design approach resulted in a user-friendly interface that allows both specialists and non-specialists to quickly and efficiently run models to estimate potential distributions of species. Our application highlights what can be accomplished with a biodiversity-oriented web application.


Asunto(s)
Animales Salvajes , Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , Internet , Algoritmos , Anfibios , Animales , Biodiversidad , Aves , Irán , Mamíferos , Reptiles , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA