Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Acc Chem Res ; 57(13): 1803-1814, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38859612

RESUMEN

ConspectusNeurotechnology has seen dramatic improvements in the last three decades. The major focus in the field has been to design electrical communication platforms with high spatial resolution, stability, and translatability for understanding and affecting neural pathways. The deployment of nanomaterials in bioelectronics has enhanced the capabilities of conventional approaches employing microelectrode arrays (MEAs) for electrical interfaces, allowing the construction of miniaturized, high-performance neuroelectronics (Garg, R.; et al. ACS Appl. Nano Mater. 2023, 6, 8495). While these advancements in the electrical neuronal interface have revolutionized neurotechnology both in scale and breadth, an in-depth understanding of neurons' interactions is challenging due to the complexity of the environments where the cells and tissues are laid. The activity of large, three-dimensional neuronal systems has proven difficult to accurately monitor and modulate, and chemical cell-cell communication is often completely neglected. Recent breakthroughs in nanotechnology have provided opportunities to use new nonelectric modes of communication with neurons and to significantly enhance electrical signal interface capabilities. The enhanced electrochemical activity and optical activity of nanomaterials owing to their nonbulk electronic properties and surface nanostructuring have seen extensive utilization. Nanomaterials' enhanced optical activity enables remote neural state modulation, whereas the defect-rich surfaces provide an enormous number of available electrocatalytic sites for neurochemical detection and electrochemical modulation of cell microenvironments through Faradaic processes. Such unique properties can allow multimodal neural interrogation toward generating closed-loop interfaces with access to more complete neural state descriptors. In this Account, we will review recent advances and our efforts spearheaded toward utilizing nanostructured electrodes for enhanced bidirectional interfaces with neurons, the application of unique hybrid nanomaterials for remote nongenetic optical stimulation of neurons, tunable nanomaterials for highly sensitive and selective neurotransmitter detection, and the utilization of nanomaterials as electrocatalysts toward electrochemically modulating cellular activity. We highlight applications of these technologies across cell types through nanomaterial engineering with a focus on multifunctional graphene nanostructures applied though several modes of neural modulation but also an exploration of broad material classes for maximizing the potency of closed-loop bioelectronics.


Asunto(s)
Nanoestructuras , Neuronas , Nanoestructuras/química , Neuronas/fisiología , Humanos , Microelectrodos , Animales , Nanotecnología/métodos
2.
MRS Adv ; 8(19): 1047-1060, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38283671

RESUMEN

Seamless integration of the body and electronics toward the understanding, quantification, and control of disease states remains one of the grand scientific challenges of this era. As such, research efforts have been dedicated to developing bioelectronic devices for chemical, mechanical, and electrical sensing, and cellular and tissue functionality modulation. The technologies developed to achieve these capabilities cross a wide range of materials and scale (and dimensionality), e.g., from micrometer to centimeters (from 2-dimensional (2D) to 3-dimensional (3D) assemblies). The integration into multimodal systems which allow greater insight and control into intrinsically multifaceted biological systems requires careful design and selection. This snapshot review will highlight the state-of-the-art in cellular recording and modulation as well as the material considerations for the design and manufacturing of devices integrating their capabilities.

3.
ACS Appl Mater Interfaces ; 14(30): 34269-34280, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35561234

RESUMEN

Thermal evaporation is a promising deposition technique to scale up perovskite solar cells (PSCs) to large areas, but the lack of understanding of the mechanisms that lead to high-quality evaporated methylammonium lead triiodide (MAPbI3) films gives rise to devices with efficiencies lower than those obtained by spin coating. This work investigates the crystalline properties of MAPbI3 deposited by the thermal coevaporation of PbI2 and MAI, where the MAI evaporation rate is controlled by setting different temperatures for the MAI source and the PbI2 deposition rate is controlled with a quartz crystal microbalance (QCM). Using grazing incident wide-angle X-ray scattering (GIWAXS) and X-ray diffraction (XRD), we identify the formation of a secondary orthorhombic phase (with a Pnma space group) that appears at MAI source temperatures below 155 °C. With synchrotron-based X-ray fluorescence (XRF) microscopy, we show that the changes in crystalline phases are not necessarily due to changes in stoichiometry. The films show a stochiometric composition when the MAI source is heated between 140 to 155 °C, and the samples become slightly MAI rich at 165 °C. Increasing the MAI temperature beyond 165 °C introduces an excess of MAI in the film, which promotes the formation of films with low crystallinity that contain low-dimensional perovskites. When they are incorporated in solar cells, the films deposited at 165 °C result in the champion power conversion efficiency, although the presence of a small amount of low-dimensional perovskite may lead to a lower open-circuit voltage. We hypothesize that the formation of secondary phases in evaporated films limits the performance of PSCs and that their formation can be suppressed by controlling the MAI source temperature, bringing the film toward a phase-pure tetragonal structure. Control of the phases during perovskite evaporation is therefore crucial to obtain high-performance solar cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA