Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nanotechnology ; 35(30)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38631308

RESUMEN

We have experimentally demonstrated spatially selective absorption in Ag-SiO2-Ag based trilayer thin films by tuning the deposition angle of SiO2layer. These structures generate cavity resonance which can be tuned across the substrate locations due to spatially selective thickness and refractive index of silicon oxide (SiO2) film sandwiched between metallic silver (Ag) mirrors. Spatially selective property of SiO2film is obtained by oblique angle deposition technique using an electron beam evaporation system. The resonance wavelength of absorption in this trilayer structure shifts across the substrate locations along the direction of oblique deposition. The extent of shift in resonance increases with increase in angle of deposition of SiO2layer. 4.14 nm mm-1average shift of resonance wavelength is observed when SiO2is deposited at 40° whereas 4.76 nm mm-1average shift is observed when SiO2is deposited at 60°. We observed that the width of resonance increases with angle of deposition of the cavity layer and ultimately the resonant absorption disappears and becomes broadband when SiO2is deposited at glancing angle deposition (GLAD) configuration. Our study reveals that there is a suitable range of oblique angle of deposition from 40° to 60° for higher spatial tunability and resonant absorption whereas the absorption becomes broadband for glancing angle deposition.

2.
Nanotechnology ; 32(24): 245708, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33760757

RESUMEN

Single-sided TiO2 thin films were prepared using a modified glancing angle deposition (GLAD) technique. An additional flux collimation plate was introduced into the GLAD arrangement to enhance the degree of collimation of depositing vapour flux. Enhancement in the ballistic growth of film on the substrate was observed with increasing distance from the vapour source. The substrate position near to the vapour source (i.e. bottom region) showed a high refractive index (RI, ∼1.336 @ 550 nm wavelength) and lower average film transmittance (∼94.5% in 400-900 nm wavelength range) compared to the others. In contrast, the TiO2 coating deposited at a distant position from the source (i.e. top region) showed a remarkably low RI (∼1.190 @ 550 nm wavelength) and excellent anti-reflection over a broad spectral region with a maximum average transmittance (∼95.3% in 400-900 nm wavelength) compared to the other substrate positions. The reduction in film RI was correlated qualitatively with the morphological alterations in the coating for different substrate positions. With a further increase in distance from the vapour source, an ultimate reduction in the RI of TiO2 to ∼1.101 was observed, which was ∼50% lower than the bulk TiO2 value (∼2.221 @ 550 nm wavelength). The present study reports the lowest RI of TiO2 together with fabrication of a TiO2-based broadband single-layer anti-reflection coating.

3.
Appl Opt ; 55(22): 6108-14, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27505395

RESUMEN

HfO2/SiO2 periodic multilayer high reflection mirrors have been prepared by a reactive electron-beam evaporation technique. The deposited mirrors were annealed in the temperature range from 300°C to 500°C. The effects of annealing on optical, microstructural, and laser-induced damage characteristics of the mirrors have been investigated. The high reflection band of the mirror shifts toward a shorter wavelength with increasing annealing temperature. As-deposited and annealed mirrors show polycrystalline structure with a monoclinic phase of HfO2. Crystalinity and grain size increase upon annealing. The laser-induced damage threshold (LIDT) has been assessed using a 532 nm pulsed laser at a pulse width of 7 ns. The LIDT value of the multilayer mirror increases from 44.1 J/cm2 to 77.6 J/cm2 with annealing up to 400°C. The improvement of LIDT with annealing is explained through oxygen vacancy defects as well as grain-size-dependent thermal conductivity. Finally, the observed laser damage morphology, such as circular scalds and ablated multilayer stacks with terrace structure, are analyzed.

4.
J Biophotonics ; 7(1-2): 77-85, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23359612

RESUMEN

Complete characterization of a layered tissue requires probing both the biochemical and the morphological information from its different layers at various depths. We report the development of a combined Raman spectroscopy (RS) and optical coherence tomography (OCT) system that is capable of measuring depth-sensitive Raman signal from the tissue layers imaged by the OCT. The sample arm of a real-time time-domain OCT system was modified to allow for co-alignment of the OCT with the Raman probe beam. The depth sensitivity of Raman was obtained by incorporating confocal Raman configuration that minimized out-of-focus Raman scattered light. The system was first validated using a layered phantom prepared by depositing a thin layer of paraffin over acetaminophen. A good correlation was observed between the OCT images and the Raman signal. The system was also used to record OCT and Raman images of a resected mucosal tissue sample. While OCT image showed the presence of epithelial and stromal layers, Raman spectra measured from these layers confirmed the biochemical difference between the two.


Asunto(s)
Espectrometría Raman/métodos , Tomografía de Coherencia Óptica/métodos , Acetaminofén , Tejido Conectivo , Epitelio , Humanos , Parafina , Fantasmas de Imagen
5.
J Biophotonics ; 2(5): 288-91, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19434615

RESUMEN

We report noninvasive imaging of the brain of adult zebrafish (Danio rerio) using real time optical coherence tomography (OCT) capable of acquiring cross sectional 2D OCT images @ 8 frames/sec. Anatomic features such as telencephalon, tectum opticum, eminentia Granularis and cerebellum were clearly resolved in the OCT images. A 3D model of zebrafish brain was reconstructed, for the first time to our knowledge, using these 2D OCT images.


Asunto(s)
Encéfalo/anatomía & histología , Tomografía de Coherencia Óptica/métodos , Pez Cebra/anatomía & histología , Animales , Encéfalo/citología , Imagenología Tridimensional , Factores de Tiempo
6.
Opt Lett ; 28(5): 340-2, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12659437

RESUMEN

We describe a novel technique for contrast enhancement in optical coherence tomography (OCT) that makes possible molecular-specific imaging for what is believed to be the first time. A pump-probe technique is employed in which a pulsed pump laser is tuned to ground-state absorption in a molecule of interest. The location of the target molecule population is derived from the resulting transient absorption of OCT sample-arm light acting as probe light. A signal processing technique for three-dimensional localization of the transient absorption signal is described, and preliminary results exhibiting OCT contrast from methylene blue dye in multilayer and scattering phantoms are presented.


Asunto(s)
Medios de Contraste , Rayos Láser , Azul de Metileno , Óptica y Fotónica , Tomografía/métodos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA