Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 29(8): 1085-98, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18083225

RESUMEN

Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium (NiTi) shape memory alloy in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO(2) layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO(2) with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM techniques. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Nanoestructuras/química , Níquel/química , Oligopéptidos/química , Titanio/química , Animales , Bovinos , Línea Celular , Proliferación Celular , Células Cultivadas , Microanálisis por Sonda Electrónica , Células Endoteliales/citología , Ratones , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Ácido Nítrico/química , Osteoblastos/citología , Ácido Palmítico/química , Propilaminas , Silanos/química , Espectrometría de Fluorescencia , Espectrometría de Masa de Ion Secundario , Propiedades de Superficie
2.
Biomaterials ; 28(31): 4608-18, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17662383

RESUMEN

The supramolecular design of bioactive artificial extracellular matrices to control cell behavior is of critical importance in cell therapies and cell assays. Most previous work in this area has focused on polymers or monolayers which preclude control of signal density and accessibility in the nanoscale filamentous environment of natural matrices. We have used here self-assembling supramolecular nanofibers that display the cell adhesion ligand RGDS at van der Waals density to cells. Signal accessibility at this very high density has been varied by changes in molecular architecture and therefore through the supramolecular packing of monomers that form the fibers. We found that branched architectures of the monomers and the consequent lower packing efficiency and additional space for epitope motion improves signaling for cell adhesion, spreading, and migration. The use of artificial matrices with nanoscale objects with extremely high epitope densities could facilitate receptor clustering for signaling and also maximize successful binding between ligands and receptors at mobile three-dimensional interfaces between matrices and cells. Supramolecular design of artificial bioactive extracellular matrices to tune cell response may prove to be a powerful strategy in regenerative medicine and to study biological processes.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Sustancias Macromoleculares/química , Nanoestructuras/química , Oligopéptidos/química , Oligopéptidos/farmacología , Ingeniería de Tejidos/métodos , Células 3T3 , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Ratones , Propiedades de Superficie
3.
J Am Chem Soc ; 125(39): 11826-7, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-14505398

RESUMEN

The feasibility of using temperature as a control mechanism for altering the selectivity of organosilica sol-gels for a specific molecule is demonstrated in this communication. The porous organosilica sol-gels act as reversible thermoresponsive materials which become hydrophobic at higher temperature and hydrophilic at lower temperature. When exposed to a mixture of molecules, the gels selectively intake the more hydrophobic species at higher temperature. A particularly remarkable feature of these gels is their ability to preferentially sequester the hydrophobic molecule at high temperature and the hydrophilic species at low temperature. Finally, these gels selectively intake hydrophobic molecules at high temperature and then preferentially release them when the temperature is lowered.


Asunto(s)
Compuestos de Organosilicio/química , Elastómeros de Silicona/química , Geles/química , Calor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA