Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Elife ; 122023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578332

RESUMEN

Based on quantitative cyto- and receptor architectonic analyses, we identified 35 prefrontal areas, including novel subdivisions of Walker's areas 10, 9, 8B, and 46. Statistical analysis of receptor densities revealed regional differences in lateral and ventrolateral prefrontal cortex. Indeed, structural and functional organization of subdivisions encompassing areas 46 and 12 demonstrated significant differences in the interareal levels of α2 receptors. Furthermore, multivariate analysis included receptor fingerprints of previously identified 16 motor areas in the same macaque brains and revealed 5 clusters encompassing frontal lobe areas. We used the MRI datasets from the non-human primate data sharing consortium PRIME-DE to perform functional connectivity analyses using the resulting frontal maps as seed regions. In general, rostrally located frontal areas were characterized by bigger fingerprints, that is, higher receptor densities, and stronger regional interconnections. Whereas more caudal areas had smaller fingerprints, but showed a widespread connectivity pattern with distant cortical regions. Taken together, this study provides a comprehensive insight into the molecular structure underlying the functional organization of the cortex and, thus, reconcile the discrepancies between the structural and functional hierarchical organization of the primate frontal lobe. Finally, our data are publicly available via the EBRAINS and BALSA repositories for the entire scientific community.


Asunto(s)
Macaca , Corteza Motora , Animales , Lóbulo Frontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Mapeo Encefálico
2.
Nat Neurosci ; 26(7): 1281-1294, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37336976

RESUMEN

Dynamics and functions of neural circuits depend on interactions mediated by receptors. Therefore, a comprehensive map of receptor organization across cortical regions is needed. In this study, we used in vitro receptor autoradiography to measure the density of 14 neurotransmitter receptor types in 109 areas of macaque cortex. We integrated the receptor data with anatomical, genetic and functional connectivity data into a common cortical space. We uncovered a principal gradient of receptor expression per neuron. This aligns with the cortical hierarchy from sensory cortex to higher cognitive areas. A second gradient, driven by serotonin 5-HT1A receptors, peaks in the anterior cingulate, default mode and salience networks. We found a similar pattern of 5-HT1A expression in the human brain. Thus, the macaque may be a promising translational model of serotonergic processing and disorders. The receptor gradients may enable rapid, reliable information processing in sensory cortical areas and slow, flexible integration in higher cognitive areas.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral , Receptores de Neurotransmisores , Anciano , Animales , Femenino , Humanos , Masculino , Ratas , Autorradiografía , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Cognición , Espinas Dendríticas , Giro del Cíngulo/citología , Giro del Cíngulo/metabolismo , Macaca fascicularis , Ratas Endogámicas Lew , Receptor de Serotonina 5-HT1A/análisis , Receptor de Serotonina 5-HT1A/metabolismo , Receptores Colinérgicos/análisis , Receptores Colinérgicos/metabolismo , Receptores Dopaminérgicos/análisis , Receptores Dopaminérgicos/metabolismo , Receptores de Neurotransmisores/análisis , Receptores de Neurotransmisores/metabolismo , Serotonina/metabolismo , Especificidad de la Especie , Vaina de Mielina/metabolismo
3.
Neuron ; 110(3): 452-469.e14, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34798047

RESUMEN

The hippocampal-entorhinal system supports cognitive functions, has lifelong neurogenic capabilities in many species, and is selectively vulnerable to Alzheimer's disease. To investigate neurogenic potential and cellular diversity, we profiled single-nucleus transcriptomes in five hippocampal-entorhinal subregions in humans, macaques, and pigs. Integrated cross-species analysis revealed robust transcriptomic and histologic signatures of neurogenesis in the adult mouse, pig, and macaque but not humans. Doublecortin (DCX), a widely accepted marker of newly generated granule cells, was detected in diverse human neurons, but it did not define immature neuron populations. To explore species differences in cellular diversity and implications for disease, we characterized subregion-specific, transcriptomically defined cell types and transitional changes from the three-layered archicortex to the six-layered neocortex. Notably, METTL7B defined subregion-specific excitatory neurons and astrocytes in primates, associated with endoplasmic reticulum and lipid droplet proteins, including Alzheimer's disease-related proteins. This resource reveals cell-type- and species-specific properties shaping hippocampal-entorhinal neurogenesis and function.


Asunto(s)
Macaca , Transcriptoma , Animales , Proteína Doblecortina , Hipocampo/patología , Humanos , Ratones , Neurogénesis/genética , Porcinos
4.
Brain Struct Funct ; 227(4): 1247-1263, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34931262

RESUMEN

Existing cytoarchitectonic maps of the human and macaque posterior occipital cortex differ in the number of areas they display, thus hampering identification of homolog structures. We applied quantitative in vitro receptor autoradiography to characterize the receptor architecture of the primary visual and early extrastriate cortex in macaque and human brains, using previously published cytoarchitectonic criteria as starting point of our analysis. We identified 8 receptor architectonically distinct areas in the macaque brain (mV1d, mV1v, mV2d, mV2v, mV3d, mV3v, mV3A, mV4v), and their respective counterpart areas in the human brain (hV1d, hV1v, hV2d, hV2v, hV3d, hV3v, hV3A, hV4v). Mean densities of 14 neurotransmitter receptors were quantified in each area, and ensuing receptor fingerprints used for multivariate analyses. The 1st principal component segregated macaque and human early visual areas differ. However, the 2nd principal component showed that within each species, area-specific differences in receptor fingerprints were associated with the hierarchical processing level of each area. Subdivisions of V2 and V3 were found to cluster together in both species and were segregated from subdivisions of V1 and from V4v. Thus, comparative studies like this provide valuable architectonic insights into how differences in underlying microstructure impact evolutionary changes in functional processing of the primate brain and, at the same time, provide strong arguments for use of macaque monkey brain as a suitable animal model for translational studies.


Asunto(s)
Macaca , Corteza Visual , Animales , Autorradiografía , Mapeo Encefálico , Humanos , Lóbulo Occipital/fisiología , Receptores de Neurotransmisores/metabolismo , Corteza Visual/fisiología , Vías Visuales/metabolismo
5.
Neuron ; 109(21): 3500-3520.e13, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34536352

RESUMEN

Dopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped dependence of working memory on dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a switch from this internal memory state to distributed persistent activity. Our work represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive function distributed across the primate cortex.


Asunto(s)
Dopamina , Memoria a Corto Plazo , Animales , Dopamina/metabolismo , Haplorrinos , Memoria a Corto Plazo/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología
6.
Neuroimage ; 231: 117843, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33577936

RESUMEN

The macaque monkey inferior parietal lobe (IPL) is a structurally heterogeneous brain region, although the number of areas it contains and the anatomical/functional relationship of identified subdivisions remains controversial. Neurotransmitter receptor distribution patterns not only reveal the position of the cortical borders, but also segregate areas associated to different functional systems. Thus we carried out a multimodal quantitative analysis of the cyto- and receptor architecture of the macaque IPL to determine the number and extent of distinct areas it encompasses. We identified four areas on the IPL convexity arranged in a caudo-rostral sequence, as well as two areas in the parietal operculum, which we projected onto the Yerkes19 surface. We found rostral areas to have relatively smaller receptor fingerprints than the caudal ones, which is in an agreement with the functional gradient along the caudo-rostral axis described in previous studies. The hierarchical analysis segregated IPL areas into two clusters: the caudal one, contains areas involved in multisensory integration and visual-motor functions, and rostral cluster, encompasses areas active during motor planning and action-related functions. The results of the present study provide novel insights into clarifying the homologies between human and macaque IPL areas. The ensuing 3D map of the macaque IPL, and the receptor fingerprints are made publicly available to the neuroscientific community via the Human Brain Project and BALSA repositories for future cyto- and/or receptor architectonically driven analyses of functional imaging studies in non-human primates.


Asunto(s)
Red Nerviosa/citología , Red Nerviosa/fisiología , Lóbulo Parietal/citología , Lóbulo Parietal/fisiología , Receptores de Neurotransmisores/fisiología , Animales , Autorradiografía/métodos , Macaca fascicularis , Macaca mulatta , Masculino , Análisis Multivariante , Red Nerviosa/química , Lóbulo Parietal/química , Receptores de Neurotransmisores/análisis
7.
Neuroimage ; 226: 117574, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221453

RESUMEN

In the present study we reevaluated the parcellation scheme of the macaque frontal agranular cortex by implementing quantitative cytoarchitectonic and multireceptor analyses, with the purpose to integrate and reconcile the discrepancies between previously published maps of this region. We applied an observer-independent and statistically testable approach to determine the position of cytoarchitectonic borders. Analysis of the regional and laminar distribution patterns of 13 different transmitter receptors confirmed the position of cytoarchitectonically identified borders. Receptor densities were extracted from each area and visualized as its "receptor fingerprint". Hierarchical and principal components analyses were conducted to detect clusters of areas according to the degree of (dis)similarity of their fingerprints. Finally, functional connectivity pattern of each identified area was analyzed with areas of prefrontal, cingulate, somatosensory and lateral parietal cortex and the results were depicted as "connectivity fingerprints" and seed-to-vertex connectivity maps. We identified 16 cyto- and receptor architectonically distinct areas, including novel subdivisions of the primary motor area 4 (i.e. 4a, 4p, 4m) and of premotor areas F4 (i.e. F4s, F4d, F4v), F5 (i.e. F5s, F5d, F5v) and F7 (i.e. F7d, F7i, F7s). Multivariate analyses of receptor fingerprints revealed three clusters, which first segregated the subdivisions of area 4 with F4d and F4s from the remaining premotor areas, then separated ventrolateral from dorsolateral and medial premotor areas. The functional connectivity analysis revealed that medial and dorsolateral premotor and motor areas show stronger functional connectivity with areas involved in visual processing, whereas 4p and ventrolateral premotor areas presented a stronger functional connectivity with areas involved in somatomotor responses. For the first time, we provide a 3D atlas integrating cyto- and multi-receptor architectonic features of the macaque motor and premotor cortex. This atlas constitutes a valuable resource for the analysis of functional experiments carried out with non-human primates, for modeling approaches with realistic synaptic dynamics, as well as to provide insights into how brain functions have developed by changes in the underlying microstructure and encoding strategies during evolution.


Asunto(s)
Atlas como Asunto , Corteza Motora/citología , Corteza Motora/diagnóstico por imagen , Corteza Motora/metabolismo , Receptores de Neurotransmisores/metabolismo , Animales , Lóbulo Frontal/citología , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/metabolismo , Neuroimagen Funcional , Imagenología Tridimensional , Macaca fascicularis , Macaca mulatta , Imagen por Resonancia Magnética , Vías Nerviosas , Receptores Adrenérgicos alfa/metabolismo , Receptores Colinérgicos/metabolismo , Receptores de GABA/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Serotonina/metabolismo
8.
Elife ; 92020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32613942

RESUMEN

The intraparietal sulcus (IPS) is structurally and functionally heterogeneous. We performed a quantitative cyto-/myelo- and receptor architectonical analysis to provide a multimodal map of the macaque IPS. We identified 17 cortical areas, including novel areas PEipe, PEipi (external and internal subdivisions of PEip), and MIPd. Multivariate analyses of receptor densities resulted in a grouping of areas based on the degree of (dis)similarity of their receptor architecture: a cluster encompassing areas located in the posterior portion of the IPS and associated mainly with the processing of visual information, a cluster including areas found in the anterior portion of the IPS and involved in sensorimotor processing, and an 'intermediate' cluster of multimodal association areas. Thus, differences in cyto-/myelo- and receptor architecture segregate the cortical ribbon within the IPS, and receptor fingerprints provide novel insights into the relationship between the structural and functional segregation of this brain region in the macaque monkey.


Asunto(s)
Mapeo Encefálico , Lóbulo Parietal/anatomía & histología , Receptores de Superficie Celular/metabolismo , Animales , Macaca mulatta , Masculino , Lóbulo Parietal/citología , Corteza Somatosensorial/anatomía & histología
9.
Brain Struct Funct ; 224(8): 2733-2756, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31392403

RESUMEN

The macaque monkey superior parietal lobule (SPL) is part of a neuronal network involved in the integration of information from visual and somatosensory cortical areas for execution of reaching and grasping movements. We applied quantitative in vitro receptor autoradiography to analyse the distribution patterns of 15 different receptors for glutamate, GABA, acetylcholine, serotonin, dopamine, and adenosine in the SPL of three adult male Macaca fascicularis monkeys. For each area, mean (averaged over all cortical layers) receptor densities were visualized as a receptor fingerprint of that area. Multivariate analyses were conducted to detect clusters of areas according to the degree of (dis)similarity of their receptor organization. Differences in regional and laminar receptor distributions confirm the location and extent of areas V6, V6Av, V6Ad, PEc, PEci, and PGm as found in cytoarchitectonic and functional studies, but also enable the definition of three subdivisions within area PE. Receptor densities are higher in supra- than in infragranular layers, with the exception of kainate, M2, and adenosine receptors. Glutamate and GABAergic receptors are the most expressed in all areas analysed. Hierarchical cluster analyses demonstrate that SPL areas are organized in two groups, an organization that corresponds to the visual or sensory-motor characteristics of those areas. Finally, based on present results and in the framework of our current understanding of the structural and functional organization of the primate SPL, we propose a novel pattern of homologies between human and macaque SPL areas.


Asunto(s)
Neuronas/citología , Neuronas/metabolismo , Lóbulo Parietal/citología , Lóbulo Parietal/metabolismo , Receptores de Neurotransmisores/metabolismo , Animales , Autorradiografía , Macaca fascicularis , Masculino , Receptores Colinérgicos/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de GABA/metabolismo , Receptores de Glutamato/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores de Serotonina/metabolismo
10.
Neuron ; 89(6): 1208-1222, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26924435

RESUMEN

Trisomy 21, or Down syndrome (DS), is the most common genetic cause of developmental delay and intellectual disability. To gain insight into the underlying molecular and cellular pathogenesis, we conducted a multi-region transcriptome analysis of DS and euploid control brains spanning from mid-fetal development to adulthood. We found genome-wide alterations in the expression of a large number of genes, many of which exhibited temporal and spatial specificity and were associated with distinct biological processes. In particular, we uncovered co-dysregulation of genes associated with oligodendrocyte differentiation and myelination that were validated via cross-species comparison to Ts65Dn trisomy mice. Furthermore, we show that hypomyelination present in Ts65Dn mice is in part due to cell-autonomous effects of trisomy on oligodendrocyte differentiation and results in slower neocortical action potential transmission. Together, these results identify defects in white matter development and function in DS, and they provide a transcriptional framework for further investigating DS neuropathogenesis.


Asunto(s)
Encéfalo , Diferenciación Celular/genética , Síndrome de Down/patología , Regulación del Desarrollo de la Expresión Génica/genética , Vaina de Mielina/metabolismo , Oligodendroglía/patología , Potenciales de Acción/genética , Adolescente , Adulto , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Diferenciación Celular/fisiología , Niño , Preescolar , Cromosomas Humanos Par 17/genética , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/fisiopatología , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Ratones Transgénicos , Mosaicismo , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/patología , Vaina de Mielina/ultraestructura , Conducción Nerviosa/genética , Cambios Post Mortem , Trisomía/genética , Sustancia Blanca/patología , Sustancia Blanca/ultraestructura , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA