Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Lasers Surg Med ; 56(4): 371-381, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38563442

RESUMEN

OBJECTIVES: To develop and practically test high-precision femtosecond laser ablation models for dental hard tissue that are useful for detailed planning of automated laser dental restorative treatment. METHODS: Analytical models are proposed, derived, and demonstrated for practical calculation of ablation rates, ablation efficiency and ablated morphology of human dental enamel and dentin using femtosecond lasers. The models assume an effective optical attenuation coefficient for the irradiated material. To achieve ablation, it is necessary for the local energy density of the attenuated pulse in the hard tissue to surpass a predefined threshold that signifies the minimum energy density required for material ionization. A 1029 nm, 40 W carbide 275 fs laser was used to ablate sliced adult human teeth and generate the data necessary for testing the models. The volume of material removed, and the shape of the ablated channel were measured using optical profilometry. RESULTS: The models fit with the measured ablation efficiency curve against laser fluence for both enamel and dentin, correctly capturing the fluence for optimum ablation and the volume of ablated material per pulse. The detailed shapes of a 400-micrometer wide channel and a single-pulse width channel are accurately predicted using the superposition of the analytical result for a single pulse. CONCLUSIONS: The findings have value for planning automated dental restorative treatment using femtosecond lasers. The measurements and analysis give estimates of the optical properties of enamel and dentin irradiated with an infrared femtosecond laser at above-threshold fluence and the proposed models give insight into the physics of femtosecond laser processing of dental hard tissue.


Asunto(s)
Terapia por Láser , Diente , Humanos , Dentina/cirugía , Rayos Láser , Luz
2.
Sci Rep ; 13(1): 20156, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978230

RESUMEN

We investigated the effect of femtosecond (fs) laser ablation of enamel and dentin for different pulse wavelengths: infrared (1030 nm), green (515 nm), and ultra-violet (343 nm) and for different pulse separations to determine the optimal irradiation conditions for the precise removal of dental hard tissues with the absence of structural and compositional damage. The ablation rates and efficiencies were established for all three laser wavelengths for both enamel and dentin at room temperature without using any irrigation or cooling system, and the surfaces were assessed with optical and scanning electron microscopy, optical profilometry, and Raman spectroscopy. We demonstrated that 515 nm fs irradiation provides the highest rate and efficiency for ablation, followed by infrared. Finally, we explored the temperature variations inside the dental pulp during the laser procedures for all three wavelengths and showed that the maximum increase at the optimum conditions for both infrared and green irradiations was 5.5 °C, within the acceptable limit of temperature increase during conventional dental treatments. Ultra-violet irradiation significantly increased the internal temperature of the teeth, well above the acceptable limit, and caused severe damage to tooth structures. Thus, ultra-violet is not a compatible laser wavelength for femtosecond teeth ablation.


Asunto(s)
Dentina , Terapia por Láser , Dentina/efectos de la radiación , Rayos Láser , Terapia por Láser/métodos , Temperatura , Esmalte Dental
3.
Biomed Opt Express ; 13(9): 4559-4571, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36187240

RESUMEN

High fluence focused femtosecond laser pulses were used to perform fast, high precision and minimally damaging cavity cutting of teeth at room temperature without using any irrigation or cooling system. The optimal ablation rates were established for both enamel and dentin, and the surfaces were assessed with optical and scanning electron microscopy, Raman spectroscopy and optical profilometry. No chemical change in the composition of enamel and dentin was observed. We explored temperature variations inside the dental pulp during the laser procedure and showed the maximum increase was 5.5°C, within the acceptable limit of temperature increase during conventional dental treatments.

4.
Opt Express ; 30(4): 6016-6036, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209549

RESUMEN

We explore, both by numerical simulations and experimentally, the flexibility in controlling Bessel beam parameters by re-imaging it into transparent material with a demagnifying collimator for the formation of high-aspect ratio nanochannels. Analysis of nanochannels produced by in-house precision-made axicon with 275 fs pulses in sapphire reveals the intensity threshold of ∼7.2 × 1013 W/cm2 required to create the cylindrical microexplosion. We estimate that the maximum applied pressure during the process was 1.5 TPa and that the resulting density of compressed sapphire in the nanochannel's shells are ∼1.19 ± 0.02 times higher than the pristine crystal, and higher than what was achieved before in spherical microexplosion with Gaussian pulses.

5.
Opt Express ; 22(14): 17122-34, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25090527

RESUMEN

This paper extends the current understanding of the laser-induced forward transfer (LIFT) process to the multi-jets ejection problem. LIFT has already been used to print micrometer-sized droplets from a liquid donor substrate with single pulse experiments. Here we study the dynamics of the high-speed multi-jets formation from silver nanoparticles ink films with a time-resolved imaging technique. A galvanometric mirrors head controls the spacing between adjacent pulses by scanning the focused beam of a high repetition rate UV picosecond laser along an ink-coated donor substrate. The laser pulses interact with the liquid film and generate cavitation bubbles that propel the ink away from the substrate and form the jets. When the spacing between consecutive pulses is substantially higher than the maximum diameter of the bubbles, there is no interaction between adjacent jets, and these remain unperturbed. However, when the pulses are brought closer significant jet-jet interaction takes place, which results in a clear deviation from the single jet dynamics. Thus, the cavitation bubbles acquire different shapes, the ink is ejected faster and along different directions depending on the spacing between the pulses, and each bubble alters the evolution of the previous one and shifts away from it.

6.
Opt Express ; 19(22): 21563-74, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22109005

RESUMEN

Fine electrically-conductive patterns of silver nanoparticles ink have been laser printed using the laser-induced forward transfer (LIFT) technique. LIFT is a technique that offers the possibility of printing patterns with high spatial resolution from a wide range of materials in solid or liquid state. Influence of drying the ink film, previous to its transfer, on the printed droplet morphology is discussed. The laser pulse energy and donor-receiver substrate separation were systematically varied and their effects on the transferred droplets were analyzed. The use of an intermediate titanium dynamic release layer was also investigated and demonstrated the possibility of a better control of both the size and shape of the printed patterns. Conditions have been determined for printing flat-top droplets with sharp edges. 21 µm width silver lines with 80 nm thickness have been printed with a smooth convex profile. Electrical resistivities of the transferred patterns are only 5 times higher than the bulk silver.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA