Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10753, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730248

RESUMEN

This paper proposes an approach to enhance the differentiation task between benign and malignant Breast Tumors (BT) using histopathology images from the BreakHis dataset. The main stages involve preprocessing, which encompasses image resizing, data partitioning (training and testing sets), followed by data augmentation techniques. Both feature extraction and classification tasks are employed by a Custom CNN. The experimental results show that the proposed approach using the Custom CNN model exhibits better performance with an accuracy of 84% than applying the same approach using other pretrained models, including MobileNetV3, EfficientNetB0, Vgg16, and ResNet50V2, that present relatively lower accuracies, ranging from 74 to 82%; these four models are used as both feature extractors and classifiers. To increase the accuracy and other performance metrics, Grey Wolf Optimization (GWO), and Modified Gorilla Troops Optimization (MGTO) metaheuristic optimizers are applied to each model separately for hyperparameter tuning. In this case, the experimental results show that the Custom CNN model, refined with MGTO optimization, reaches an exceptional accuracy of 93.13% in just 10 iterations, outperforming the other state-of-the-art methods, and the other four used pretrained models based on the BreakHis dataset.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Humanos , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/patología , Neoplasias de la Mama/diagnóstico , Femenino , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
2.
BMC Bioinformatics ; 25(1): 61, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38321434

RESUMEN

BACKGROUND: The rapid advancement of next-generation sequencing (NGS) machines in terms of speed and affordability has led to the generation of a massive amount of biological data at the expense of data quality as errors become more prevalent. This introduces the need to utilize different approaches to detect and filtrate errors, and data quality assurance is moved from the hardware space to the software preprocessing stages. RESULTS: We introduce MAC-ErrorReads, a novel Machine learning-Assisted Classifier designed for filtering Erroneous NGS Reads. MAC-ErrorReads transforms the erroneous NGS read filtration process into a robust binary classification task, employing five supervised machine learning algorithms. These models are trained on features extracted through the computation of Term Frequency-Inverse Document Frequency (TF_IDF) values from various datasets such as E. coli, GAGE S. aureus, H. Chr14, Arabidopsis thaliana Chr1 and Metriaclima zebra. Notably, Naive Bayes demonstrated robust performance across various datasets, displaying high accuracy, precision, recall, F1-score, MCC, and ROC values. The MAC-ErrorReads NB model accurately classified S. aureus reads, surpassing most error correction tools with a 38.69% alignment rate. For H. Chr14, tools like Lighter, Karect, CARE, Pollux, and MAC-ErrorReads showed rates above 99%. BFC and RECKONER exceeded 98%, while Fiona had 95.78%. For the Arabidopsis thaliana Chr1, Pollux, Karect, RECKONER, and MAC-ErrorReads demonstrated good alignment rates of 92.62%, 91.80%, 91.78%, and 90.87%, respectively. For the Metriaclima zebra, Pollux achieved a high alignment rate of 91.23%, despite having the lowest number of mapped reads. MAC-ErrorReads, Karect, and RECKONER demonstrated good alignment rates of 83.76%, 83.71%, and 83.67%, respectively, while also producing reasonable numbers of mapped reads to the reference genome. CONCLUSIONS: This study demonstrates that machine learning approaches for filtering NGS reads effectively identify and retain the most accurate reads, significantly enhancing assembly quality and genomic coverage. The integration of genomics and artificial intelligence through machine learning algorithms holds promise for enhancing NGS data quality, advancing downstream data analysis accuracy, and opening new opportunities in genetics, genomics, and personalized medicine research.


Asunto(s)
Arabidopsis , Inteligencia Artificial , Teorema de Bayes , Escherichia coli , Staphylococcus aureus , Programas Informáticos , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento , Aprendizaje Automático , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA