Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Cheminform ; 15(1): 121, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111020

RESUMEN

With the increasingly more important role of machine learning (ML) models in chemical research, the need for putting a level of confidence to the model predictions naturally arises. Several methods for obtaining uncertainty estimates have been proposed in recent years but consensus on the evaluation of these have yet to be established and different studies on uncertainties generally uses different metrics to evaluate them. We compare three of the most popular validation metrics (Spearman's rank correlation coefficient, the negative log likelihood (NLL) and the miscalibration area) to the error-based calibration introduced by Levi et al. (Sensors 2022, 22, 5540). Importantly, metrics such as the negative log likelihood (NLL) and Spearman's rank correlation coefficient bear little information in themselves. We therefore introduce reference values obtained through errors simulated directly from the uncertainty distribution. The different metrics target different properties and we show how to interpret them, but we generally find the best overall validation to be done based on the error-based calibration plot introduced by Levi et al. Finally, we illustrate the sensitivity of ranking-based methods (e.g. Spearman's rank correlation coefficient) towards test set design by using the same toy model ferent test sets and obtaining vastly different metrics (0.05 vs. 0.65).

2.
Angew Chem Int Ed Engl ; 62(49): e202310580, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37830522

RESUMEN

Recently we have demonstrated how a genetic algorithm (GA) starting from random tertiary amines can be used to discover a new and efficient catalyst for the alcohol-mediated Morita-Baylis-Hillman (MBH) reaction. In particular, the discovered catalyst was shown experimentally to be eight times more active than DABCO, commonly used to catalyze the MBH reaction. This represents a breakthrough in using generative models for catalyst optimization. However, the GA procedure, and hence discovery, relied on two important pieces of information; 1) the knowledge that tertiary amines catalyze the reaction and 2) the mechanism and reaction profile for the catalyzed reaction, in particular the transition state structure of the rate-determining step. Thus, truly de novo catalyst discovery must include these steps. Here we present such a method for discovering catalyst candidates for a specific reaction while simultaneously proposing a mechanism for the catalyzed reaction. We show that tertiary amines and phosphines are potential catalysts for the MBH reaction by screening 11 molecular templates representing common functional groups. The method relies on an automated reaction discovery workflow using meta-dynamics calculations. Combining this method for catalyst candidate discovery with our GA-based catalyst optimization method results in an algorithm for truly de novo catalyst discovery.

3.
J Chem Theory Comput ; 18(12): 7052-7072, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36413807

RESUMEN

Dynamical simulations of ultrafast electron transfer reactions are of utmost interest. To allow for energy dissipation directly into an external surrounding environment, a solvent coupling model has been deduced, implemented, and utilized to describe the photoinduced electron transfer dynamics within a model triad system herein. The model is based on Redfield theory, and the environment is represented by harmonic oscillators filled with bosonic quanta. To imitate real solvents, the oscillators have been equipped with frequencies and polarization lifetimes characteristic of the corresponding solvent. The population was found to transfer through the energetically lowest electron transfer route regardless of the medium. The condensed population transfer dynamics were observed to be highly dependent on the solvent parameters. In particular, an increase in the solvent coupling entailed a detainment in the population transfer from the initially prepared diabatic state and a promotion in the population transfer through the other electron transfer route. Two explanations based on the diagonal and off-diagonal matrix elements of the Kohn-Sham Fock matrix, respectively, have been provided. The lifetime of the populated partially charge-separated state was prolonged with increasing solvent polarity, and it was explained in terms of attractive interactions between the solvent's dipole moments and the fragments' charges. The high-frequency vibrational fine-structure in the correlation function was demonstrated to be important for the transfer dynamics, and the importance of dephasing effects in polar solvents was verified and precised to concern the optical polarization of the solvents.

4.
J Phys Chem B ; 124(15): 3065-3073, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32175746

RESUMEN

High-potential iron-oxo species are intermediates in the catalytic cycles of oxygenase enzymes. They can cause heme degradation and irreversible oxidation of nearby amino acids. We have proposed that there are protective mechanisms in which hole hopping from oxidized hemes through tryptophan/tyrosine chains generates a surface-exposed amino-acid oxidant that could be rapidly disarmed by reaction with cellular reductants. In investigations of cytochrome P450BM3, we identified Trp96 as a critical residue that could play such a protective role. This Trp is cation-π paired with Arg398 in 81% of mammalian P450s. Here we report on the effect of the Trp/Arg cation-π interaction on Trp96 formal potentials as well as on electronic coupling strengths between Trp96 and the heme both for wild type cytochrome P450 and selected mutants. Mutation of Arg398 to His, which decreases the Trp96 formal potential, increases Trp-heme electronic coupling; however, surprisingly, the rate of phototriggered electron transfer from a Ru-sensitizer (through Trp96) to the P450BM3 heme was unaffected by the Arg398His mutation. We conclude that Trp96 has moved away from Arg398, suggesting that the protective mechanism for P450s with this Trp-Arg pair is conformationally gated.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hemo , Animales , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Transporte de Electrón , Oxidación-Reducción , Triptófano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA