Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Food Chem ; 443: 138506, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306905

RESUMEN

Researchers are addressing environmental concerns related to petroleum-based plastic packaging by exploring biopolymers from natural sources, chemical synthesis, and microbial fermentation. Despite the potential of individual biopolymers, they often exhibit limitations like low water resistance and poor mechanical properties. Blending polymers emerges as a promising strategy to overcome these challenges, creating films with enhanced performance. This review focuses on recent advancements in chitosan/polyvinyl alcohol (PVA) blend food packaging films. It covers molecular structure, properties, strategies for performance improvement, and applications in food preservation. The blend's excellent compatibility and intermolecular interactions make it a promising candidate for biodegradable films. Future research should explore large-scale thermoplastic technologies and investigate the incorporation of additives like natural extracts and nanoparticles to enhance film properties. Chitosan/PVA blend films offer a sustainable alternative to petroleum-based plastic packaging, with potential applications in practical food preservation.


Asunto(s)
Quitosano , Petróleo , Alcohol Polivinílico/química , Quitosano/química , Embalaje de Alimentos , Biopolímeros/química
2.
Foods ; 13(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338500

RESUMEN

Food-borne pathogens and their toxins cause significant health problems in humans. Formation of biogenic amines (BAs) produced by microbial decarboxylation of amino acids in food is undesirable because it can induce toxic effects in consumers. Therefore, it is crucial to investigate the effects of natural additives with high bioactivity like spice extracts to inhibit the growth of these bacteria and the formation of BAs in food. In the present study, the antibacterial effects of diethyl ether spice (sumac, cumin, black pepper, and red pepper) extracts at doses of 1% (w/v) on Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, Campylobacter jejuni, Aeromonas hydrophila, Salmonella Paratyphi A, and Yersinia enterocolitica) food-borne pathogen bacterial strains (FBP) were established. In addition, the accumulation of ammonia (AMN), trimethylamine (TMA), and biogenic amines (BAs) in tyrosine decarboxylase broth (TDB) was investigated by using high performance liquid chromatography (HPLC). Sumac extract exhibited the highest antibacterial potential against all FBPs, followed by cumin and peppers. AMN (570.71 mg/L) and TMA (53.66 mg/L) production were strongly inhibited by sumac extract in the levels of 55.10 mg/L for Y. enterocolitica and 2.76 mg/L for A. hydrophila, respectively. With the exception of S. aureus, black pepper dramatically reduced the synthesis of putrescine, serotonin, dopamine, and agmatine by FBP especially for Gram-negative ones. Furthermore, sumac extracts inhibited histamine and tyramine production by the majority of FBP. This research suggests the application of sumac extracts as natural preservatives for inhibiting the growth of FBPs and limiting the production of AMN, TMA, and BAs.

3.
Ultrason Sonochem ; 101: 106676, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37939526

RESUMEN

Ultrasound is a contemporary non-thermal technology that is currently being extensively evaluated for its potential to preserve highly perishable foods, while also contributing positively to the economy and environment. There has been a rise in the demand for food products that have undergone minimal processing or have been subjected to non-thermal techniques. Livestock-derived food products, such as meat, milk, eggs, and seafood, are widely recognized for their high nutritional value. These products are notably rich in proteins and quality fats, rendering them particularly vulnerable to oxidative and microbial spoilage. Ultrasound has exhibited significant antimicrobial properties, as well as the ability to deactivate enzymes and enhance mass transfer. The present review centers on the production and classification of ultrasound, as well as its recent implementation in the context of livestock-derived food products. The commercial applications, advantages, and limitations of the subject matter are also subject to scrutiny. The review indicated that ultrasound technology can be effectively utilized in food products derived from livestock, leading to favorable outcomes in terms of prolonging the shelf life of food while preserving its nutritional, functional, and sensory attributes. It is recommended that additional research be conducted to investigate the effects of ultrasound processing on nutrient bioavailability and extraction. The implementation of hurdle technology can effectively identify and mitigate the lower inactivation of certain microorganisms or vegetative cells.


Asunto(s)
Manipulación de Alimentos , Conservación de Alimentos , Animales , Conservación de Alimentos/métodos , Manipulación de Alimentos/métodos , Valor Nutritivo , Calidad de los Alimentos , Carne
4.
Foods ; 12(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37509860

RESUMEN

Recently, the isolation and identification of various biologically active secondary metabolites from algae have been of scientific interest, with particular attention paid to carotenoids, widely distributed in various photosynthetic organisms, including algal species. Carotenoids are among the most important natural pigments, with many health-promoting effects. Since the number of scientific studies on the presence and profile of carotenoids in algae has increased exponentially along with the interest in their potential commercial applications, this review aimed to provide an overview of the current knowledge (from 2015) on carotenoids detected in different algal species (12 microalgae, 21 green algae, 26 brown algae, and 43 red algae) to facilitate the comparison of the results of different studies. In addition to the presence, content, and identification of total and individual carotenoids in various algae, the method of their extraction and the main extraction parameters were also highlighted.

5.
Adv Food Nutr Res ; 103: 1-40, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36863832

RESUMEN

The spread of nano/microplastics (N/MPs) pollution has gained importance due to the associated health concerns. Marine environment including fishes, mussels, seaweed and crustaceans are largely exposed to these potential threats. N/MPs are associated with plastic, additives, contaminants and microbial growth, which are transmitted to higher trophic levels. Foods from aquatic origin are known to promote health and have gained immense importance. Recently, aquatic foods are traced to transmit the nano/microplastic and the persistent organic pollutant poising hazard to humans. However, microplastic ingestion, translocation and bioaccumulation of the contaminant have impacts on animal health. The level of pollution depends upon the pollution in the zone of growth for aquatic organisms. Consumption of contaminated aquatic food affects the health by transferring the microplastic and chemicals. This chapter describes the sources and occurrence of N/MPs in marine environment, detailed classification of N/MPs based on the properties influencing associated hazard. Additionally, occurrence of N/MPs and their impact on quality and safety in aquatic food products are discussed. Lastly, existing regulations and requirements of a robust framework of N/MPs are reviewed.


Asunto(s)
Microplásticos , Plásticos , Animales , Humanos , Promoción de la Salud , Estado Nutricional , Alimentos Marinos
6.
Plants (Basel) ; 12(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36986905

RESUMEN

Polyphenol has been used in treatment for some health disorders due to their diverse health promoting properties. These compounds can reduce the impacts of oxidation on the human body, prevent the organs and cell structure against deterioration and protect their functional integrity. The health promoting abilities are attributed to their high bioactivity imparting them high antioxidative, antihypertensive, immunomodulatory, antimicrobial, and antiviral activity, as well as anticancer properties. The application of polyphenols such as flavonoids, catechin, tannins, and phenolic acids in the food industry as bio-preservative substances for foods and beverages can exert a superb activity on the inhibition of oxidative stress via different types of mechanisms. In this review, the detailed classification of polyphenolic compunds and their important bioactivity with special focus on human health are addressed. Additionally, their ability to inhibit SARS-CoV-2 could be used as alternative therapy to treat COVID patients. Inclusions of polyphenolic compounds in various foods have demonstrated their ability to extend shelf life and they positive impacts on human health (antioxidative, antihypertensive, immunomodulatory, antimicrobial, anticancer). Additionally, their ability to inhibit the SARS-CoV-2 virus has been reported. Considering their natural occurrence and GRAS status they are highly recommended in food.

7.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36789616

RESUMEN

Muscle foods are regarded as nutritionally dense foods while they are prone to spoilage by action of microorganism and oxidation. Recently, the consumer's preference is mostly toward minimally processed foods as well as preserved with natural preservatives. However, natural extract directly to the food matrix has several drawbacks. Hence development and applications of nanoemulsion has gained importance for the preservation of muscle foods to meet consumer requirements with enhanced food safety. Nanoemulsion utilizes natural extracts at much lower concentration with higher preservative abilities over original components. Nanoemulsions offer protection to the active component from degradation and ensure longer bioavailability. Novel techniques used for formulation of nanoemulsion provide stability to the emulsion with desirable qualities to improve their impacts. The application of nanoemulsion is known to enhance the preservative action of nanoemulsions by improving the microbial safety and oxidative stability in nanoform. This review provides recent updates on different methods used for formulation of nanoemulsions from different sources. Besides, successful application of nanoemulsion derived using natural agents for muscle food preservation and shelf life extension are reviewed. Thus, the application of nanoemulsion to extend shelf life and maintain quality is suggested for muscle foods.

8.
Crit Rev Food Sci Nutr ; 63(23): 6547-6563, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35114860

RESUMEN

Climate change, the growth in world population, high levels of food waste and food loss, and the risk of new disease or pandemic outbreaks are examples of the many challenges that threaten future food sustainability and the security of the planet and urgently need to be addressed. The fourth industrial revolution, or Industry 4.0, has been gaining momentum since 2015, being a significant driver for sustainable development and a successful catalyst to tackle critical global challenges. This review paper summarizes the most relevant food Industry 4.0 technologies including, among others, digital technologies (e.g., artificial intelligence, big data analytics, Internet of Things, and blockchain) and other technological advances (e.g., smart sensors, robotics, digital twins, and cyber-physical systems). Moreover, insights into the new food trends (such as 3D printed foods) that have emerged as a result of the Industry 4.0 technological revolution will also be discussed in Part II of this work. The Industry 4.0 technologies have significantly modified the food industry and led to substantial consequences for the environment, economics, and human health. Despite the importance of each of the technologies mentioned above, ground-breaking sustainable solutions could only emerge by combining many technologies simultaneously. The Food Industry 4.0 era has been characterized by new challenges, opportunities, and trends that have reshaped current strategies and prospects for food production and consumption patterns, paving the way for the move toward Industry 5.0.


Asunto(s)
Inteligencia Artificial , Eliminación de Residuos , Humanos , Alimentos , Industria de Alimentos , Internet
9.
Crit Rev Food Sci Nutr ; 63(29): 9716-9730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35603708

RESUMEN

Non-thermal processing methods, such as cold plasma (CP), high pressure processing (HPP) and pulsed electric fields (PEF), have been proposed for natural and fresh-like foods to inactivate microorganisms at nearly-ambient or moderate temperature. Since natural, safe, and healthy foods with longer shelf-life are increasingly demanded, these requests are challenging to fulfill by using current thermal processing technologies. Thus, novel preservation technologies based on non-thermal processing methods are required. The aim of this article is to provide recent developments in maintaining seafood safety via CP, HHP, and PEF technologies, as well as their mechanisms of action regarding contamination with food-borne microorganisms. Their application to control parasites, spores and the possibility to eradicate the hazard of SARS-CoV-2 transmission through seafood products are also discussed. CP, HHP, and PEF have been applied to inactivate food-borne microorganisms in the seafood industry. However, the drawbacks for each emerging technology have also been reported. To ensure safety and maintain quality of seafood products, the combination of these processing techniques with natural antimicrobial agents or existing thermal methods may be more applicable in the case of the seafood industry. Further studies are required to examine the effects of these methods on viruses, parasites, and SARS-CoV-2 in seafood.


Asunto(s)
Gases em Plasma , Virus , Manipulación de Alimentos/métodos , Presión Hidrostática , Conservación de Alimentos/métodos , Alimentos Marinos
10.
Foods ; 11(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36140971

RESUMEN

The effect of natural extracts (0.05%) and vacuum packaging on the sensory, chemical, and microbiological quality of mackerel balls were evaluated at refrigerated (4 ± 2 °C) storage. Natural extracts thyme (38.13 mg GAE/g), rosemary (81.85 mg GAE/g) and basil (21.08 mg GAE/g) were evaluated. Natural extracts imparted stability to lipids (TBA, FFA, and PV), and the ability was further improved by vacuum packaging. Biochemical changes (TVB-N, pH) and microbiological quality (total viable count) were also retained. Control samples packed under vacuum were found to cross over acceptable limits on day 28. Based on sensory quality evaluation, samples treated with rosemary and thyme extracts showed superior sensory quality over control, whilebasil-treated samples were not found acceptable at day 28. Consequently, the inclusion of thyme and rosemary extracts exhibits preservative quality when combined with vacuum packaging, retaining biochemical, microbial, and sensory quality.

11.
Adv Food Nutr Res ; 102: 275-339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36064295

RESUMEN

Plant-derived bioactive compounds have been extensively studied and used within food industry for the last few decades. Those compounds have been used to extend the shelf-life and improve physico-chemical and sensory properties on food products. They have also been used as nutraceuticals due to broad range of potential health-promoting properties. Unlike the synthetic additives, the natural plant-derived compounds are more acceptable and often regarded as safer by the consumers. This chapter summarizes the extraction methods and sources of those plant-derived bioactives as well as recent findings in relation to their health-promoting properties, including cardio-protective, anti-diabetic, anti-inflammatory, anti-carcinogenic, immuno-modulatory and neuro-protective properties. In addition, the impact of applying those plant-derived compounds on seafood products is also investigated by reviewing the recent studies on their use as anti-microbial, anti-oxidant, coloring and flavoring agents as well as freshness indicators. Moreover, the current limitations of the use of plant-derived bioactive compounds as well as future prospects are discussed. The discoveries show high potential of those compounds and the possibility to apply on many different seafood. The compounds can be applied as individual while more and more studies are showing synergetic effect when those compounds are used in combination providing new important research possibilities.


Asunto(s)
Compuestos Orgánicos , Plantas , Antiinflamatorios , Antioxidantes/farmacología , Industria de Alimentos , Fitoquímicos/farmacología , Plantas/química , Alimentos Marinos
12.
Front Microbiol ; 13: 875164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814679

RESUMEN

The coronavirus disease (COVID-19) pandemic caused several negative impacts on global human health and the world's economy. Food and seafood safety and security were among the principal challenges and causes of concern for the food industry and consumers during the spread of this global pandemic. This article focused on the effects of COVID-19 pandemic on potential safety issues with seafood products and their processing methods. Moreover, the potential impacts of coronavirus transmission through seafood on human health were evaluated. The role of authenticity, traceability, and antimicrobials from natural sources to preserve seafood and the possible interaction of functional foods on the human immune system are also discussed. Although seafood is not considered a principal vector of SARS-CoV-2 transmission, the possible infections through contaminated surfaces of such food products cannot be neglected. The positive effects of seafood consumption on possible immunity built up, and COVID-19 are also summarized.

13.
Microorganisms ; 10(4)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35456823

RESUMEN

Microbial metabolites have proven effects to inhibit food spoilage microbiota, without any development of antimicrobial resistance. This review provides a recent literature update on the preservative action of metabolites derived from microorganisms on seafood. Fish and fishery products are regarded as a myriad of nutrition, while being highly prone to spoilage. Several proven controversies (antimicrobial resistance and health issues) related to the use of synthetic preservatives have caused an imminent problem. The demand for minimally processed and naturally preserved clean-label fish and fishery products is on rise. Metabolites derived from microorganisms have exhibited diverse preservation capacities on fish and fishery products' spoilage. Inclusions with other preservation techniques, such as hurdle technology, for the shelf-life extension of fish and fishery products are also summarized.

14.
Mar Drugs ; 20(3)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35323505

RESUMEN

In recent years, the food, pharma, and cosmetic industries have shown considerable interest in bioactive molecules of marine origin that show high potential for application as nutraceuticals and therapeutic agents. Astaxanthin, a lipid-soluble and orange-reddish-colored carotenoid pigment, is one of the most investigated pigments. Natural astaxanthin is mainly produced from microalgae, and it shows much stronger antioxidant properties than its synthetic counterpart. This paper aims to summarize and discuss the important aspects and recent findings associated with the possible use of crustacean byproducts as a source of astaxanthin. In the last five years of research on the crustaceans and their byproducts as a source of natural astaxanthin, there are many new findings regarding the astaxanthin content in different species and new green extraction protocols for its extraction. However, there is a lack of information on the amounts of astaxanthin currently obtained from the byproducts as well as on the cost-effectiveness of the astaxanthin production from the byproducts. Improvement in these areas would most certainly contribute to the reduction of waste and reuse in the crustacean processing industry. Successful exploitation of byproducts for recovery of this valuable compound would have both environmental and social benefits. Finally, astaxanthin's strong biological activity and prominent health benefits have been discussed in the paper.


Asunto(s)
Crustáceos , Residuos , Animales , Industria de Procesamiento de Alimentos , Humanos , Alimentos Marinos , Xantófilas/farmacología , Xantófilas/uso terapéutico
15.
Mar Drugs ; 19(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34564142

RESUMEN

Developing peptide-based drugs are very promising to address many of the lifestyle mediated diseases which are prevalent in a major portion of the global population. As an alternative to synthetic peptide-based drugs, derived peptides from natural sources have gained a greater attention in the last two decades. Aquatic organisms including plants, fish and shellfish are known as a rich reservoir of parent protein molecules which can offer novel sequences of amino acids in peptides, having unique bio-functional properties upon hydrolyzing with proteases from different sources. However, rather than exploiting fish and shellfish stocks which are already under pressure due to overexploitation, the processing discards, regarded as secondary raw material, could be a potential choice for peptide based therapeutic development strategies. In this connection, we have attempted to review the scientific reports in this area of research that deal with some of the well-established bioactive properties, such as antihypertensive, anti-oxidative, anti-coagulative, antibacterial and anticarcinogenic properties, with reference to the type of enzymes, substrate used, degree of particular bio-functionality, mechanism, and wherever possible, the active amino acid sequences in peptides. Many of the studies have been conducted on hydrolysate (crude mixture of peptides) enriched with low molecular bioactive peptides. In vitro and in vivo experiments on the potency of bioactive peptides to modulate the human physiological functions beneficially have demonstrated that these peptides can be used in the prevention and treatment of non-communicable lifestyle mediated diseases. The information synthesized under this review could serve as a point of reference to drive further research on and development of functionally active therapeutic natural peptides. Availability of such scientific information is expected to open up new zones of investigation for adding value to underutilized secondary raw materials, which in turn paves the way for sustainability in fish processing. However, there are significant challenges ahead in exploring the fish waste as a source of bioactive peptides, as it demands more studies on mechanisms and structure-function relationship understanding as well as clearance from regulatory and statutory bodies before reaching the end user in the form of supplement or therapeutics.


Asunto(s)
Proteínas de Peces , Peces , Industria de Procesamiento de Alimentos , Péptidos , Residuos , Animales , Proteínas de Peces/química , Proteínas de Peces/farmacología , Gelatina/farmacología , Humanos , Hidrólisis , Péptidos/química , Péptidos/farmacología
16.
Compr Rev Food Sci Food Saf ; 20(5): 4407-4425, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34355478

RESUMEN

Cold plasma (CP) is an upcoming technology implemented for the preservation of highly perishable foods, especially aquatic food products (AFPs). The high moisture content, high-quality protein with all essential amino acids and unsaturated fatty acids makes AFP more susceptible to microbial spoilage and oxidation of lipids and proteins. Spoilage lowers the nutritive value and could generate toxic components, making it unsafe for consumption. In recent times, the rising demand for food products of aquatic origin with preserved quality and extended shelf-life has been recorded. In addition, minimally or nonthermally processed and preserved foods are gaining great attention. CP technology has demonstrated an excellent ability to inactivate microorganisms without promoting their resistance and triggering some deteriorative enzymes, which are typical factors responsible for the spoilage of AFP. Consequently, CP could be recommended as a minimal processing intervention for preserving the quality of AFP. This review focuses on different mechanisms of fish spoilage, that is, by microorganisms and oxidation, their inhibition via the application of CP, and the retention of quality and shelf-life extension of AFP.


Asunto(s)
Gases em Plasma , Animales , Microbiología de Alimentos , Conservación de Alimentos , Alimentos en Conserva , Valor Nutritivo
17.
Compr Rev Food Sci Food Saf ; 20(4): 4182-4210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34146459

RESUMEN

Fish and fishery products (FFP) are highly perishable due to their high nutritional value and moisture content. The spoilage is mainly caused by microorganisms and chemical reactions, especially lipid oxidation, leading to losses in quality and market value. Microbiological and lipid deteriorations of fishery-derived products directly lower their nutritive value and pose the risk of toxicity for human health. Increasing demand for safe FFP brings about the preservation using additives from natural origins without chemical additives due to their safety and strict regulation. Antimicrobials and antioxidants from natural sources have exhibited an excellent control over the growth of microorganisms causing fish spoilage via different mechanisms. They also play a major role in retarding lipid oxidation by acting at various stages of oxidation. Antimicrobials and antioxidants from natural sources are usually regarded as safe with no detrimental effects on the quality attributes of FFP. This review provides recent literature on the different antioxidant and antimicrobial agents from natural sources, focusing on microbial and oxidative spoilage mechanisms, their inhibition system, and their applications to retard spoilage, maintain safety, and extend the shelf life of FFP. Their applications and benefits have been revisited.


Asunto(s)
Antiinfecciosos , Antioxidantes , Animales , Explotaciones Pesqueras , Peces , Conservación de Alimentos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA