Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Water Res X ; 19: 100166, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36685722

RESUMEN

Mainstream nitrogen removal via anammox is widely recognized as a promising wastewater treatment process. However, its application is challenging at large scale due to unstable suppression of nitrite-oxidizing bacteria (NOB). In this study, a pilot-scale mainstream anammox process was implemented in an Integrated Fixed-film Activated Sludge (IFAS) configuration. Stable operation with robust NOB suppression was maintained for over one year. This was achieved through integration of three key control strategies: i) low dissolved oxygen (DO = 0.4 ± 0.2 mg O2/L), ii) regular free nitrous acid (FNA)-based sludge treatment, and iii) residual ammonium concentration control (NH4 + with a setpoint of ∼8 mg N/L). Activity tests and FISH demonstrated that NOB barely survived in sludge flocs and were inhibited in biofilms. Despite receiving organic-deficient wastewater from a pilot-scale High-Rate Activated Sludge (HRAS) system as the feed, the system maintained a stable effluent total nitrogen concentration mostly below 10 mg N/L, which was attributed to the successful retention of anammox bacteria. This study successfully demonstrated large-scale long-term mainstream anammox application and generated new practical knowledge for NOB control and anammox retention.

2.
Water Res ; 223: 119034, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36067606

RESUMEN

As a promising energy- and carbon efficient process for nitrogen removal from wastewater, mainstream nitrite shunt has been extensively researched. However, beyond the laboratory it is challenging to maintain stable performance by suppressing nitrite-oxidising bacteria (NOB). In this study, a pilot-scale reactor system receiving real sewage was operated in two stages for >850 days to evaluate two novel NOB suppression strategies for achieving nitrite shunt: i) sidestream sludge treatment based on alternating free nitrous acid (FNA) and free ammonia (FA) and ii) sidestream FNA/FA sludge treatment integrated with in-situ NOB suppression via step-feed. The results showed that, with sidestream sludge treatment alone, NOB developed resistance relatively quickly to the treatment, leading to unstable nitrite shunt. In contrast, robust nitrite shunt was achieved and stably maintained for more than a year when sidestream sludge treatment was integrated with a step-feed strategy. Kinetic analyses suggested that sludge treatment and step-feed worked in synergy, leading to stable NOB suppression. The integrated strategy demonstrated in this study removes a key barrier to the implementation of stable mainstream nitrite shunt.


Asunto(s)
Nitritos , Aguas del Alcantarillado , Amoníaco , Bacterias , Reactores Biológicos/microbiología , Carbono , Nitrógeno , Ácido Nitroso , Oxidación-Reducción , Aguas del Alcantarillado/microbiología , Aguas Residuales
3.
Water Res ; 169: 114931, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669901

RESUMEN

Anaerobic ammonium oxidation (Anammox) based technology has potential for nitrogen removal from wastewater with high salinity, but both salt and nitrite (a substrate for Anammox) have negative effect on microbial activity. In order to achieve Anammox in saline wastewater treatment, it is essential to understand the combined effect of these two components. In this study, the individual and combined effect of salinity and nitrite on fixed film freshwater Anammox bacteria (FAB, mainly belonging to the Ca. Brocadia genus), enriched on carriers from a 1500 L pilot scale one-stage (PN/Anammox) moving bed bioreactor (MBBR), were systematically investigated by 57 pre-designed batch tests. The combined inhibition of nitrite and salinity was determined by comparing with additive and independent inhibition models. With salinity only, the specific Anammox activity (SAA) decreased with increasing salinity: 14.6 mS/cm (about 9.1 g NaCl/L) of salinity caused 50% inhibition (IC50). With nitrite only, SAA started to decrease when nitrite concentration was above 450 mg N/L (threshold) and decreased with increased nitrite (IC50 = 666 mg N/L) thereafter. Significantly, when both salinity and nitrite were elevated, both the threshold and IC50 of nitrite were reduced, with inhibition enhanced. Analysis showed that at high salinity (>14.6 mS/cm) and nitrite concentration (>666 mg N/L), inhibition was close to that predicted by simulation of additive and independent inhibition models. Within a salinity range of 4-14.6 mS/cm and nitrite concentration range of 50-666 mg N/L, the combined inhibition was more severe than prediction (p < 0.05) based on the additive and independent inhibition models and therefore it was determined to be synergistic inhibition.


Asunto(s)
Nitritos , Salinidad , Anaerobiosis , Bacterias , Biopelículas , Reactores Biológicos , Agua Dulce , Nitrógeno , Oxidación-Reducción
4.
Water Res ; 45(17): 5695-704, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21903236

RESUMEN

The presence of disinfection by-products (DBPs) such as trihalomethanes (THMs), haloacetic acids (HAAs) and N-nitrosamines in water is of great concern due to their adverse effects on human health. In this work, the removal of N-nitrosodimethylamine (NDMA), total THM and five HAA precursors from secondary effluent by biological activated carbon (BAC) is investigated at full and pilot scale. In the pilot plant two filter media, sand and granular activated carbon, are tested. In addition, we evaluate the influence of ozonation prior to BAC filtration on its performance. Among the bulk of NDMA precursors, the fate of four pharmaceuticals containing a dimethylamino moiety in the chemical structure are individually investigated. Both NDMA formation potential and each of the studied pharmaceuticals are dramatically reduced by the BAC even in the absence of main ozonation prior to the filtration. The low removal of NDMA precursors at the sand filtration in comparison to the removal of NDMA precursors at the BAC suggests that adsorption may play an important role on the removal of NDMA precursors by BAC. Contrary, the precursors for THM and HAA formation are reduced in both sand filtration and BAC indicating that the precursors for the formation of these DBPs are to some extent biodegradable.


Asunto(s)
Acetatos/análisis , Dimetilnitrosamina/análisis , Filtración/métodos , Trihalometanos/análisis , Purificación del Agua/métodos , Australia , Biodegradación Ambiental , Dimetilnitrosamina/química , Desinfección , Preparaciones Farmacéuticas/química , Proyectos Piloto
5.
Biotechniques ; 44(7): 913-20, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18533901

RESUMEN

Despite the great popularity and potential of microarrays, their use for research and clinical applications is still hampered by lengthy and costly design and optimization processes, mainly because the technology relies on the end point measurement of hybridization. Thus, the ability to monitor many hybridization events on a standard microarray slide in real time would greatly expand the use and benefit of this technology, as it would give access to better prediction of probe performance and improved optimization of hybridization parameters. Although real-time hybridization and thermal denaturation measurements have been reported, a complete walk-away system compatible with the standard format of microarrays is still unavailable. To address this issue, we have designed a biochip tool that combines a hybridization station with active mixing capability and temperature control together with a fluorescence reader in a single compact benchtop instrument. This integrated live hybridization machine (LHM) allows measuring in real time the hybridization of target DNA to thousands of probes simultaneously and provides excellent levels of detection and superior sequence discrimination. Here we show on an environmental single nucleotide polymorphism (SNP) model system that the LHM enables a variety of experiments unachievable with conventional biochip tools.


Asunto(s)
Hibridación de Ácido Nucleico/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA