Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biomed Pharmacother ; 176: 116907, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865849

RESUMEN

The plant alkaloid homoharringtonine (HHT) is a Food and Drug Administration (FDA)-approved drug for the treatment of hematologic malignancies. In addition to its well-established antitumor activity, accumulating evidence attributes anti-inflammatory effects to HHT, which have mainly been studied in leukocytes to date. However, a potential influence of HHT on inflammatory activation processes in endothelial cells, which are a key feature of inflammation and a prerequisite for the leukocyte-endothelial cell interaction and leukocyte extravasation, remains poorly understood. In this study, the anti-inflammatory potential of HHT and its derivative harringtonine (HT) on the TNF-induced leukocyte-endothelial cell interaction was assessed, and the underlying mechanistic basis of these effects was elucidated. HHT affected inflammation in vivo in a murine peritonitis model by reducing leukocyte infiltration and proinflammatory cytokine expression as well as ameliorating abdominal pain behavior. In vitro, HT and HHT impaired the leukocyte-endothelial cell interaction by decreasing the expression of the endothelial cell adhesion molecules intracellular adhesion molecule -1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was mediated by a bipartite mechanism. While HHT did not affect the prominent TNF-induced pro-inflammatory NF-ĸB signaling cascade, the compound downregulated the VCAM1 mRNA expression in an IRF-1-dependent manner and diminished active ICAM1 mRNA translation as determined by polysome profiling. This study highlights HHT as an anti-inflammatory compound that efficiently hampers the leukocyte-endothelial cell interaction by targeting endothelial activation processes.


Asunto(s)
Regulación hacia Abajo , Homoharringtonina , Inflamación , Factor 1 Regulador del Interferón , ARN Mensajero , Molécula 1 de Adhesión Celular Vascular , Animales , Regulación hacia Abajo/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Humanos , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Ratones , Homoharringtonina/farmacología , Masculino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Antiinflamatorios/farmacología , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo
2.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069304

RESUMEN

Despite the importance of rapid adaptive responses in the course of inflammation and the notion that post-transcriptional regulation plays an important role herein, relevant translational alterations, especially during the resolution phase, remain largely elusive. In the present study, we analyzed translational changes in inflammatory bone marrow-derived macrophages upon resolution-promoting efferocytosis. Total RNA-sequencing confirmed that apoptotic cell phagocytosis induced a pro-resolution signature in LPS/IFNγ-stimulated macrophages (Mϕ). While inflammation-dependent transcriptional changes were relatively small between efferocytic and non-efferocytic Mϕ; considerable differences were observed at the level of de novo synthesized proteins. Interestingly, translationally regulated targets in response to inflammatory stimuli were mostly downregulated, with only minimal impact of efferocytosis. Amongst these targets, pro-resolving matrix metallopeptidase 12 (Mmp12) was identified as a translationally repressed candidate during early inflammation that recovered during the resolution phase. Functionally, reduced MMP12 production enhanced matrix-dependent migration of Mϕ. Conclusively, translational control of MMP12 emerged as an efficient strategy to alter the migratory properties of Mϕ throughout the inflammatory response, enabling Mϕ migration within the early inflammatory phase while restricting migration during the resolution phase.


Asunto(s)
Metaloproteinasa 12 de la Matriz , Fagocitosis , Humanos , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 12 de la Matriz/metabolismo , Fagocitosis/fisiología , Macrófagos/metabolismo , Inflamación/metabolismo , Regulación de la Expresión Génica , Apoptosis/fisiología
3.
Front Immunol ; 14: 1121864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377965

RESUMEN

Hypoxia contributes to numerous pathophysiological conditions including inflammation-associated diseases. We characterized the impact of hypoxia on the immunometabolic cross-talk between cholesterol and interferon (IFN) responses. Specifically, hypoxia reduced cholesterol biosynthesis flux and provoked a compensatory activation of sterol regulatory element-binding protein 2 (SREBP2) in monocytes. Concomitantly, a broad range of interferon-stimulated genes (ISGs) increased under hypoxia in the absence of an inflammatory stimulus. While changes in cholesterol biosynthesis intermediates and SREBP2 activity did not contribute to hypoxic ISG induction, intracellular cholesterol distribution appeared critical to enhance hypoxic expression of chemokine ISGs. Importantly, hypoxia further boosted chemokine ISG expression in monocytes upon infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Mechanistically, hypoxia sensitized toll-like receptor 4 (TLR4) signaling to activation by SARS-CoV-2 spike protein, which emerged as a major signaling hub to enhance chemokine ISG induction following SARS-CoV-2 infection of hypoxic monocytes. These data depict a hypoxia-regulated immunometabolic mechanism with implications for the development of systemic inflammatory responses in severe cases of coronavirus disease-2019 (COVID-19).


Asunto(s)
COVID-19 , Interferones , Humanos , Interferones/farmacología , Monocitos , SARS-CoV-2 , Quimiocinas , Hipoxia , Colesterol
4.
Biology (Basel) ; 11(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35336722

RESUMEN

Macrophages constitute a major part of the tumor-infiltrating immune cells. Within the tumor microenvironment, they acquire an alternatively activated, tumor-supporting phenotype. Factors released by tumor cells are crucial for the recruitment of tumor-associated macrophages. In the present project, we aimed to understand the role of hsa-miR-200c-3p (miR-200c) in the interplay between tumor cells and macrophages. To this end, we employed a coculture system of MCF7 breast tumor cells and primary human macrophages and observed the transfer of miR-200c from apoptotic tumor cells to macrophages, which required intact CD36 receptor in macrophages. We further comprehensively determined miR-200c targets in macrophages by mRNA-sequencing and identified numerous migration-associated mRNAs to be downregulated by miR-200c. Consequently, miR-200c attenuated macrophage infiltration into 3-dimensional tumor spheroids. miR-200c-mediated reduction in infiltration further correlated with a miR-200c migration signature comprised of the four miR-200c-repressed, predicted targets PPM1F, RAB11FIB2, RDX, and MSN.

5.
Theranostics ; 11(15): 7570-7588, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34158867

RESUMEN

Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive. Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging. Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation. Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions.


Asunto(s)
Neoplasias de la Mama/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Macrófagos/enzimología , Neoplasias Mamarias Animales/metabolismo , Microambiente Tumoral , Animales , Neoplasias de la Mama/patología , Femenino , Humanos , Isoenzimas/metabolismo , Células MCF-7 , Neoplasias Mamarias Animales/patología
6.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672261

RESUMEN

The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.


Asunto(s)
Antagomirs/farmacología , MicroARNs , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/genética , Animales , Ensayos Clínicos como Asunto , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia/métodos , Terapia Molecular Dirigida , Neoplasias/patología , Oligonucleótidos/administración & dosificación , Microambiente Tumoral/efectos de los fármacos
7.
J Immunol ; 206(5): 1058-1066, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33504620

RESUMEN

IL-38 is an IL-1 family receptor antagonist that restricts IL-17-driven inflammation by limiting cytokine production from macrophages and T cells. In the current study, we aimed to explore its role in experimental autoimmune encephalomyelitis in mice, which is, among others, driven by IL-17. Unexpectedly, IL-38-deficient mice showed strongly reduced clinical scores and histological markers of experimental autoimmune encephalomyelitis. This was accompanied by reduced inflammatory cell infiltrates, including macrophages and T cells, as well as reduced expression of inflammatory markers in the spinal cord. IL-38 was highly expressed by infiltrating macrophages in the spinal cord, and in vitro activated IL-38-deficient bone marrow-derived macrophages showed reduced expression of inflammatory markers, accompanied by altered cellular metabolism. These data suggest an alternative cell-intrinsic role of IL-38 to promote inflammation in the CNS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Inflamación/metabolismo , Interleucina-1/metabolismo , Animales , Biomarcadores/metabolismo , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Inflamación/inmunología , Interleucina-1/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Índice de Severidad de la Enfermedad , Médula Espinal/inmunología , Médula Espinal/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
8.
Cells ; 8(12)2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766495

RESUMEN

MicroRNAs (miRs) significantly contribute to the regulation of gene expression, by virtue of their ability to interact with a broad, yet specific set of target genes. MiRs are produced and released by almost every cell type and play an important role in horizontal gene regulation in the tumor microenvironment (TME). In the TME, both tumor and stroma cells cross-communicate via diverse factors including miRs, which are taking central stage as a therapeutic target of anti-tumor therapy. One of the immune escape strategies adopted by tumor cells is to release miRs as a Trojan horse to hijack circulating or tumor-localized monocytes/macrophages to tune them for pro-tumoral functions. On the other hand, macrophage-derived miRs exert anti-tumor functions. The transfer of miRs from host to recipient cells depends on the supramolecular structure and composition of miR carriers, which determine the distinct uptake mechanism by recipient cells. In this review, we provide a recent update on the miR-mediated crosstalk between tumor cells and macrophages and their mode of uptake in the TME.


Asunto(s)
Macrófagos/metabolismo , MicroARNs/genética , Microambiente Tumoral/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Macrófagos/inmunología , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal/genética
9.
Cells ; 8(8)2019 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-31357710

RESUMEN

The bioactive lipid sphingosine-1-phosphate (S1P), along with its receptors, modulates lymphocyte trafficking and immune responses to regulate skin inflammation. Macrophages are important in the pathogenesis of psoriasiform skin inflammation and express various S1P receptors. How they respond to S1P in skin inflammation remains unknown. We show that myeloid specific S1P receptor 1 (S1PR1) deletion enhances early inflammation in a mouse model of imiquimod-induced psoriasis, without altering the immune cell infiltrate. Mechanistically, myeloid S1PR1 deletion altered the formation of IL-1ß, VEGF-A, and VEGF-C, and their receptors' expression in psoriatic skin, which subsequently lead to reciprocal regulation of neoangiogenesis and neolymphangiogenesis. Experimental findings were corroborated in human clinical datasets and in knockout macrophages in vitro. Increased blood vessel but reduced lymph vessel density may explain the exacerbated inflammatory phenotype in conditional knockout mice. These findings assign a novel role to macrophage S1PR1 and provide a rationale for therapeutically targeting local S1P during skin inflammation.


Asunto(s)
Dermatitis/metabolismo , Linfangiogénesis , Macrófagos/metabolismo , Neovascularización Fisiológica , Transducción de Señal , Receptores de Esfingosina-1-Fosfato/metabolismo , Animales , Biomarcadores , Dermatitis/etiología , Dermatitis/patología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Inmunofenotipificación , Linfangiogénesis/genética , Ratones , Ratones Noqueados , Neovascularización Fisiológica/genética , Receptores de Esfingosina-1-Fosfato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA