Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
NPJ Vaccines ; 9(1): 134, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085247

RESUMEN

In 2022, a genotype IV (GIV) strain of Japanese encephalitis virus (JEV) caused an unprecedented and widespread outbreak of disease in pigs and humans in Australia. As no veterinary vaccines against JEV are approved in Australia and all current approved human and veterinary vaccines are derived from genotype (G) III JEV strains, we used the recently described insect-specific Binjari virus (BinJV) chimeric flavivirus vaccine technology to produce a JEV GIV vaccine candidate. Herein we describe the production of a chimeric virus displaying the structural prM and E proteins of a JEV GIV isolate obtained from a stillborn piglet (JEVNSW/22) in the genomic backbone of BinJV (BinJ/JEVNSW/22-prME). BinJ/JEVNSW/22-prME was shown to be antigenically indistinguishable from the JEVNSW/22 parental virus by KD analysis and a panel of JEV-reactive monoclonal antibodies in ELISA. BinJ/JEVNSW/22-prME replicated efficiently in C6/36 cells, reaching titres of >107 infectious units/mL - an important attribute for vaccine manufacture. As expected, BinJ/JEVNSW/22-prME failed to replicate in a variety of vertebrate cells lines. When used to immunise mice, the vaccine induced a potent virus neutralising response against JEVNSW/22 and to GII and GIII JEV strains. The BinJ/JEVNSW/22-prME vaccine provided complete protection against lethal challenge with JEVNSW/22, whilst also providing partial protection against viraemia and disease for the related Murray Valley encephalitis virus. Our results demonstrate that BinJ/JEVNSW/22-prME is a promising vaccine candidate against JEV.

2.
Mol Ther ; 32(8): 2519-2534, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38894543

RESUMEN

Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.


Asunto(s)
Alphavirus , Recombinación Genética , Vacunas de ARNm , Animales , Ratones , Alphavirus/genética , Alphavirus/inmunología , Ratones Endogámicos C57BL , Humanos , Receptor de Interferón alfa y beta/genética , Replicación Viral , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/efectos adversos , Ratones Noqueados , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/efectos adversos
3.
Front Immunol ; 15: 1382655, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803494

RESUMEN

Introduction: Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods: Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 µm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results: Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion: The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Inmunidad Innata , Pulmón , Microplásticos , SARS-CoV-2 , Animales , COVID-19/inmunología , COVID-19/virología , Inmunidad Innata/efectos de los fármacos , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Ratones , Pulmón/inmunología , Pulmón/virología , Pulmón/patología , Citocinas/metabolismo , Humanos , Neumonía Viral/inmunología , Neumonía Viral/virología , Femenino , Síndrome de Liberación de Citoquinas/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Betacoronavirus/inmunología , Pandemias
4.
Nat Rev Immunol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570719

RESUMEN

The World Health Organization recently declared a global initiative to control arboviral diseases. These are mainly caused by pathogenic flaviviruses (such as dengue, yellow fever and Zika viruses) and alphaviruses (such as chikungunya and Venezuelan equine encephalitis viruses). Vaccines represent key interventions for these viruses, with licensed human and/or veterinary vaccines being available for several members of both genera. However, a hurdle for the licensing of new vaccines is the epidemic nature of many arboviruses, which presents logistical challenges for phase III efficacy trials. Furthermore, our ability to predict or measure the post-vaccination immune responses that are sufficient for subclinical outcomes post-infection is limited. Given that arboviruses are also subject to control by the immune system of their insect vectors, several approaches are now emerging that aim to augment antiviral immunity in mosquitoes, including Wolbachia infection, transgenic mosquitoes, insect-specific viruses and paratransgenesis. In this Review, we discuss recent advances, current challenges and future prospects in exploiting both vertebrate and invertebrate immune systems for the control of flaviviral and alphaviral diseases.

5.
Front Microbiol ; 14: 1320856, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075874

RESUMEN

The reduced pathogenicity of the omicron BA.1 sub-lineage compared to earlier variants is well described, although whether such attenuation is retained for later variants like BA.5 and XBB remains controversial. We show that BA.5 and XBB isolates were significantly more pathogenic in K18-hACE2 mice than a BA.1 isolate, showing increased neurotropic potential, resulting in fulminant brain infection and mortality, similar to that seen for original ancestral isolates. BA.5 also infected human cortical brain organoids to a greater extent than the BA.1 and original ancestral isolates. In the brains of mice, neurons were the main target of infection, and in human organoids neuronal progenitor cells and immature neurons were infected. The results herein suggest that evolving omicron variants may have increasing neurotropic potential.

6.
Front Microbiol ; 14: 1238542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869655

RESUMEN

RT-qPCR remains a key diagnostic methodology for COVID-19/SARS-CoV-2. Typically, nasal or saliva swabs from patients are placed in virus transport media (VTM), RNA is extracted at the pathology laboratory, and viral RNA is measured using RT-qPCR. In this study, we describe the use of TNA-Cifer Reagent E in a pre-clinical evaluation study to inactivate SARS-CoV-2 as well as prepare samples for RT-qPCR. Adding 1 part TNA-Cifer Reagent E to 5 parts medium containing SARS-CoV-2 for 10 min at room temperature inactivated the virus and permitted RT-qPCR detection. TNA-Cifer Reagent E was compared with established column-based RNA extraction and purification methodology using a panel of human clinical nasal swab samples (n = 61), with TNA-Cifer Reagent E showing high specificity (100%) and sensitivity (97.37%). Mixtures of SARS-CoV-2 virus and TNA-Cifer Reagent E could be stored for 3 days at room temperature or for 2 weeks at 4°C without the loss of RT-qPCR detection sensitivity. The detection sensitivity was preserved when TNA-Cifer Reagent E was used in conjunction with a range of VTM for saliva samples but only PBS (Gibco) and Amies Orange for nasal samples. Thus, TNA-Cifer Reagent E improves safety by rapidly inactivating the virus during sample processing, potentially providing a safe means for molecular SARS-CoV-2 testing outside traditional laboratory settings. The reagent also eliminates the need for column-based and/or automated viral RNA extraction/purification processes, thereby providing cost savings for equipment and reagents, as well as reducing processing and handling times.

7.
Sci Total Environ ; 859(Pt 1): 160163, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36395835

RESUMEN

Warmer climatic conditions have been associated with fewer COVID-19 cases. Herein we infected K18-hACE2 mice housed at the standard animal house temperature of ∼22 °C, or at ∼31 °C, which is considered to be thermoneutral for mice. On day 2 post infection, RNA-Seq analyses showed no significant differential gene expression lung in lungs of mice housed at the two temperatures, with almost identical viral loads and type I interferon responses. There was also no significant difference in viral loads in lungs on day 5, but RNA-Seq and histology analyses showed clearly elevated inflammatory signatures and infiltrates. Thermoneutrality thus promoted lung inflammation. On day 2 post infection mice housed at 31 °C showed reduced viral loads in nasal turbinates, consistent with increased mucociliary clearance at the warmer ambient temperature. These mice also had reduced virus levels in the brain, and an ensuing amelioration of weight loss and a delay in mortality. Warmer air temperatures may thus reduce infection of the upper respiratory track and the olfactory epithelium, resulting in reduced brain infection. Potential relevance for anosmia and neurological sequelae in COVID-19 patients is discussed.


Asunto(s)
COVID-19 , Neumonía , Ratones , Animales , COVID-19/patología , Enzima Convertidora de Angiotensina 2/metabolismo , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Pulmón/patología , Encéfalo/metabolismo
8.
PLoS Pathog ; 18(9): e1010867, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36155667

RESUMEN

How well mouse models recapitulate the transcriptional profiles seen in humans remains debatable, with both conservation and diversity identified in various settings. Herein we use RNA-Seq data and bioinformatics approaches to analyze the transcriptional responses in SARS-CoV-2 infected lungs, comparing 4 human studies with the widely used K18-hACE2 mouse model, a model where hACE2 is expressed from the mouse ACE2 promoter, and a model that uses a mouse adapted virus and wild-type mice. Overlap of single copy orthologue differentially expressed genes (scoDEGs) between human and mouse studies was generally poor (≈15-35%). Rather than being associated with batch, sample treatment, viral load, lung damage or mouse model, the poor overlaps were primarily due to scoDEG expression differences between species. Importantly, analyses of immune signatures and inflammatory pathways illustrated highly significant concordances between species. As immunity and immunopathology are the focus of most studies, these mouse models can thus be viewed as representative and relevant models of COVID-19.


Asunto(s)
COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Pulmón , Ratones , Ratones Transgénicos , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/genética
9.
Virus Evol ; 8(2): veac063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35919871

RESUMEN

Human ACE2 Human angiotensin converting enzyme 2 (hACE2) is the key cell attachment and entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the original SARS-CoV-2 isolates unable to use mouse ACE2 (mACE2). Herein we describe the emergence of a SARS-CoV-2 strain capable of ACE2-independent infection and the evolution of mouse-adapted (MA) SARS-CoV-2 by in vitro serial passaging of virus in co-cultures of cell lines expressing hACE2 and mACE2. MA viruses evolved with up to five amino acid changes in the spike protein, all of which have been seen in human isolates. MA viruses replicated to high titers in C57BL/6J mouse lungs and nasal turbinates and caused characteristic lung histopathology. One MA virus also evolved to replicate efficiently in several ACE2-negative cell lines across several species, including clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) ACE2 knockout cells. An E484D substitution is likely involved in ACE2-independent entry and has appeared in only ≈0.003 per cent of human isolates globally, suggesting that it provided no significant selection advantage in humans. ACE2-independent entry reveals a SARS-CoV-2 infection mechanism that has potential implications for disease pathogenesis, evolution, tropism, and perhaps also intervention development.

10.
ACS Cent Sci ; 8(5): 527-545, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35647275

RESUMEN

Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a coreceptor with the ACE2 protein for the S1 spike protein on SARS-CoV-2 virus, providing a tractable new therapeutic target. Clinically used heparins demonstrate an inhibitory activity but have an anticoagulant activity and are supply-limited, necessitating alternative solutions. Here, we show that synthetic HS mimetic pixatimod (PG545), a cancer drug candidate, binds and destabilizes the SARS-CoV-2 spike protein receptor binding domain and directly inhibits its binding to ACE2, consistent with molecular modeling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of SARS-CoV-2 virus show that pixatimod potently inhibits the infection of monkey Vero E6 cells and physiologically relevant human bronchial epithelial cells at safe therapeutic concentrations. Pixatimod also retained broad potency against variants of concern (VOC) including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, in a K18-hACE2 mouse model, pixatimod significantly reduced SARS-CoV-2 viral titers in the upper respiratory tract and virus-induced weight loss. This demonstration of potent anti-SARS-CoV-2 activity tolerant to emerging mutations establishes proof-of-concept for targeting the HS-Spike protein-ACE2 axis with synthetic HS mimetics and provides a strong rationale for clinical investigation of pixatimod as a potential multimodal therapeutic for COVID-19.

12.
Biomedicines ; 10(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35203562

RESUMEN

Fourier transform infrared (FTIR) spectroscopy provides a (bio)chemical snapshot of the sample, and was recently used in proof-of-concept cohort studies for COVID-19 saliva screening. However, the biological basis of the proposed technology has not been established. To investigate underlying pathophysiology, we conducted controlled infection experiments on Vero E6 cells in vitro and K18-hACE2 mice in vivo. Potentially infectious culture supernatant or mouse oral lavage samples were treated with ethanol or 75% (v/v) Trizol for attenuated total reflectance (ATR)-FTIR spectroscopy and proteomics, or RT-PCR, respectively. Controlled infection with UV-inactivated SARS-CoV-2 elicited strong biochemical changes in culture supernatant/oral lavage despite a lack of viral replication, determined by RT-PCR or a cell culture infectious dose 50% assay. Nevertheless, SARS-CoV-2 infection induced additional FTIR signals over UV-inactivated SARS-CoV-2 infection in both cell and mouse models, which correspond to aggregated proteins and RNA. Proteomics of mouse oral lavage revealed increased secretion of kallikreins and immune modulatory proteins. Next, we collected saliva from a cohort of human participants (n = 104) and developed a predictive model for COVID-19 using partial least squares discriminant analysis. While high sensitivity of 93.48% was achieved through leave-one-out cross-validation, COVID-19 patients testing negative on follow-up on the day of saliva sampling using RT-PCR was poorly predicted in this model. Importantly, COVID-19 vaccination did not lead to the misclassification of COVID-19 negatives. Finally, meta-analysis revealed that SARS-CoV-2 induced increases in the amide II band in all arms of this study and in recently published cohort studies, indicative of altered ß-sheet structures in secreted proteins. In conclusion, this study reveals a consistent secretory pathophysiological response to SARS-CoV-2, as well as a simple, robust method for COVID-19 saliva screening using ATR-FTIR.

13.
Elife ; 112022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119362

RESUMEN

Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.


Asunto(s)
Granzimas/genética , Ratones Noqueados/genética , NADP Transhidrogenasas/genética , Animales , Artritis/virología , Fiebre Chikungunya/genética , Virus Chikungunya , Modelos Animales de Enfermedad , Antecedentes Genéticos , Genotipo , Granzimas/metabolismo , Ratones Endogámicos C57BL , NADP Transhidrogenasas/metabolismo
14.
Vaccines (Basel) ; 10(1)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35062746

RESUMEN

We recently developed a chimeric flavivirus vaccine technology based on the novel insect-specific Binjari virus (BinJV) and used this to generate a chimeric ZIKV vaccine (BinJ/ZIKA-prME) that protected IFNAR-/- dams and fetuses from infection. Herein, we show that a single vaccination of IFNAR-/- mice with unadjuvanted BinJ/ZIKA-prME generated neutralizing antibody responses that were retained for 14 months. At 15 months post vaccination, mice were also completely protected against detectable viremia and substantial body weight loss after challenge with ZIKVPRVABC59. BinJ/ZIKA-prME vaccination thus provided long-term protective immunity without the need for adjuvant or replication of the vaccine in the vaccine recipient, both attractive features for a ZIKV vaccine.

15.
Sci Total Environ ; 809: 152212, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34890673

RESUMEN

Global microplastic (MP) contamination and the effects on the environment are well described. However, the potential for MP consumption to affect human health remains controversial. Mice consuming ≈80 µg/kg/day of 1 µm polystyrene MPs via their drinking water showed no weight loss, nor were MPs detected in internal organs. The microbiome was also not significantly changed. MP consumption did lead to small transcriptional changes in the colon suggesting plasma membrane perturbations and mild inflammation. Mice were challenged with the arthritogenic chikungunya virus, with MP consumption leading to a significantly prolonged arthritic foot swelling that was associated with elevated Th1, NK cell and neutrophil signatures. Immunohistochemistry also showed a significant increase in the ratio of neutrophils to monocyte/macrophages. The picture that emerges is reminiscent of enteropathic arthritis, whereby perturbations in the colon are thought to activate innate lymphoid cells that can inter alia migrate to joint tissues to promote inflammation.


Asunto(s)
Artritis Infecciosa , Contaminantes Químicos del Agua , Animales , Colon , Inmunidad Innata , Linfocitos , Ratones , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis
16.
Viruses ; 15(1)2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36680179

RESUMEN

The global coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spawned an ongoing demand for new research reagents and interventions. Herein we describe a panel of monoclonal antibodies raised against SARS-CoV-2. One antibody showed excellent utility for immunohistochemistry, clearly staining infected cells in formalin-fixed and paraffin embedded lungs and brains of mice infected with the original and the omicron variants of SARS-CoV-2. We demonstrate the reactivity to multiple variants of concern using ELISAs and describe the use of the antibodies in indirect immunofluorescence assays, Western blots, and rapid antigen tests. Finally, we illustrate the ability of two antibodies to reduce significantly viral tissue titers in K18-hACE2 transgenic mice infected with the original and an omicron isolate of SARS-CoV-2.


Asunto(s)
Anticuerpos Monoclonales , COVID-19 , Animales , Humanos , Ratones , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/genética , Ratones Transgénicos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
18.
PLoS Pathog ; 17(7): e1009723, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34214142

RESUMEN

SARS-CoV-2 uses the human ACE2 (hACE2) receptor for cell attachment and entry, with mouse ACE2 (mACE2) unable to support infection. Herein we describe an ACE2-lentivirus system and illustrate its utility for in vitro and in vivo SARS-CoV-2 infection models. Transduction of non-permissive cell lines with hACE2 imparted replication competence, and transduction with mACE2 containing N30D, N31K, F83Y and H353K substitutions, to match hACE2, rescued SARS-CoV-2 replication. Intrapulmonary hACE2-lentivirus transduction of C57BL/6J mice permitted significant virus replication in lung epithelium. RNA-Seq and histological analyses illustrated that this model involved an acute inflammatory disease followed by resolution and tissue repair, with a transcriptomic profile similar to that seen in COVID-19 patients. hACE2-lentivirus transduction of IFNAR-/- and IL-28RA-/- mouse lungs was used to illustrate that loss of type I or III interferon responses have no significant effect on virus replication. However, their importance in driving inflammatory responses was illustrated by RNA-Seq analyses. We also demonstrate the utility of the hACE2-lentivirus transduction system for vaccine evaluation in C57BL/6J mice. The ACE2-lentivirus system thus has broad application in SARS-CoV-2 research, providing a tool for both mutagenesis studies and mouse model development.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Perfilación de la Expresión Génica , Lentivirus , SARS-CoV-2 , Transducción Genética , Enzima Convertidora de Angiotensina 2/biosíntesis , Enzima Convertidora de Angiotensina 2/genética , Animales , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
19.
Nat Commun ; 12(1): 3431, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103499

RESUMEN

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that despite the large size of the viral RNA genome (~30 kb), infectious full-length cDNA is readily assembled in vitro by a circular polymerase extension reaction (CPER) methodology without the need for technically demanding intermediate steps. Overlapping cDNA fragments are generated from viral RNA and assembled together with a linker fragment containing CMV promoter into a circular full-length viral cDNA in a single reaction. Transfection of the circular cDNA into mammalian cells results in the recovery of infectious SARS-CoV-2 virus that exhibits properties comparable to the parental virus in vitro and in vivo. CPER is also used to generate insect-specific Casuarina virus with ~20 kb genome and the human pathogens Ross River virus (Alphavirus) and Norovirus (Calicivirus), with the latter from a clinical sample. Additionally, reporter and mutant viruses are generated and employed to study virus replication and virus-receptor interactions.


Asunto(s)
Genética Inversa , SARS-CoV-2/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Chlorocebus aethiops , Culicidae/virología , Furina/metabolismo , Genoma Viral , Células HEK293 , Humanos , Ratones , Mutación/genética , Células 3T3 NIH , Reacción en Cadena de la Polimerasa , Células RAW 264.7 , Receptores Virales/metabolismo , Células Vero , Proteínas Virales/química , Replicación Viral
20.
Virol J ; 18(1): 123, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107996

RESUMEN

BACKGROUND: The international SARS-CoV-2 pandemic has resulted in an urgent need to identify new anti-viral drugs for treatment of COVID-19. The initial step to identifying potential candidates usually involves in vitro screening that includes standard cytotoxicity controls. Under-appreciated is that viable, but stressed or otherwise compromised cells, can also have a reduced capacity to replicate virus. A refinement proposed herein for in vitro drug screening thus includes a simple growth assay to identify drug concentrations that cause cellular stress or "cytomorbidity", as distinct from cytotoxicity or loss of viability. METHODS: A simple rapid bioassay is presented for antiviral drug screening using Vero E6 cells and inhibition of SARS-CoV-2 induced cytopathic effects (CPE) measured using crystal violet staining. We use high cell density for cytotoxicity assays, and low cell density for cytomorbidity assays. RESULTS: The assay clearly illustrated the anti-viral activity of remdesivir, a drug known to inhibit SARS-CoV-2 replication. In contrast, nitazoxanide, oleuropein, cyclosporine A and ribavirin all showed no ability to inhibit SARS-CoV-2 CPE. Hydroxychloroquine, cyclohexamide, didemnin B, γ-mangostin and linoleic acid were all able to inhibit viral CPE at concentrations that did not induce cytotoxicity. However, these drugs inhibited CPE at concentrations that induced cytomorbidity, indicating non-specific anti-viral activity. CONCLUSIONS: We describe the methodology for a simple in vitro drug screening assay that identifies potential anti-viral drugs via their ability to inhibit SARS-CoV-2-induced CPE. The additional growth assay illustrated how several drugs display anti-viral activity at concentrations that induce cytomorbidity. For instance, hydroxychloroquine showed anti-viral activity at concentrations that slow cell growth, arguing that its purported in vitro anti-viral activity arises from non-specific impairment of cellular activities. The cytomorbidity assay can therefore rapidly exclude potential false positives.


Asunto(s)
Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/química , Bioensayo , Chlorocebus aethiops , Efecto Citopatogénico Viral/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Concentración 50 Inhibidora , Células Vero , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA