RESUMEN
Hedgehog signaling is involved in embryonic development and cancer growth. Functional activity of secreted Hedgehog signaling proteins is dependent on N-terminal palmitoylation, making the palmitoyl transferase Hedgehog acyltransferase (HHAT), a potential drug target and a series of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines have been identified as HHAT inhibitors. Based on structural data, we designed and synthesized 37 new analogues which we profiled alongside 13 previously reported analogues in enzymatic and cellular assays. Our results show that a central amide linkage, a secondary amine, and (R)-configuration at the 4-position of the core are three key factors for inhibitory potency. Several potent analogues with low- or sub-µM IC50 against purified HHAT also inhibit Sonic Hedgehog (SHH) palmitoylation in cells and suppress the SHH signaling pathway. This work identifies IMP-1575 as the most potent cell-active chemical probe for HHAT function, alongside an inactive control enantiomer, providing tool compounds for validation of HHAT as a target in cellular assays.
Asunto(s)
Proteínas Hedgehog , Proteínas Hedgehog/metabolismo , Piridinas/química , Piridinas/farmacologíaRESUMEN
Circadian rhythms influence physiology, metabolism, and molecular processes in the human body. Estimation of individual body time (circadian phase) is therefore highly relevant for individual optimization of behavior (sleep, meals, sports), diagnostic sampling, medical treatment, and for treatment of circadian rhythm disorders. Here, we provide a partial least squares regression (PLSR) machine learning approach that uses plasma-derived metabolomics data in one or more samples to estimate dim light melatonin onset (DLMO) as a proxy for circadian phase of the human body. For this purpose, our protocol was aimed to stay close to real-life conditions. We found that a metabolomics approach optimized for either women or men under entrained conditions performed equally well or better than existing approaches using more labor-intensive RNA sequencing-based methods. Although estimation of circadian body time using blood-targeted metabolomics requires further validation in shift work and other real-world conditions, it currently may offer a robust, feasible technique with relatively high accuracy to aid personalized optimization of behavior and clinical treatment after appropriate validation in patient populations.
Asunto(s)
Cuerpo Humano , Melatonina , Masculino , Humanos , Femenino , Luz , Ritmo Circadiano/fisiología , Sueño/fisiología , Melatonina/metabolismo , MetabolómicaRESUMEN
B-cell lymphoma 6 (BCL6) is a transcriptional repressor and oncogenic driver of diffuse large B-cell lymphoma (DLBCL). Here, we report the optimization of our previously reported tricyclic quinolinone series for the inhibition of BCL6. We sought to improve the cellular potency and in vivo exposure of the non-degrading isomer, CCT373567, of our recently published degrader, CCT373566. The major limitation of our inhibitors was their high topological polar surface areas (TPSA), leading to increased efflux ratios. Reducing the molecular weight allowed us to remove polarity and decrease TPSA without considerably reducing solubility. Careful optimization of these properties, as guided by pharmacokinetic studies, led to the discovery of CCT374705, a potent inhibitor of BCL6 with a good in vivo profile. Modest in vivo efficacy was achieved in a lymphoma xenograft mouse model after oral dosing.
Asunto(s)
Linfoma de Células B Grandes Difuso , Quinolonas , Animales , Humanos , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Linfoma de Células B Grandes Difuso/patología , Proteínas Proto-Oncogénicas c-bcl-6/química , Factores de TranscripciónRESUMEN
CCT251236 1, a potent chemical probe, was previously developed from a cell-based phenotypic high-throughput screen (HTS) to discover inhibitors of transcription mediated by HSF1, a transcription factor that supports malignancy. Owing to its activity against models of refractory human ovarian cancer, 1 was progressed into lead optimization. The reduction of P-glycoprotein efflux became a focus of early compound optimization; central ring halogen substitution was demonstrated by matched molecular pair analysis to be an effective strategy to mitigate this liability. Further multiparameter optimization led to the design of the clinical candidate, CCT361814/NXP800 22, a potent and orally bioavailable fluorobisamide, which caused tumor regression in a human ovarian adenocarcinoma xenograft model with on-pathway biomarker modulation and a clean in vitro safety profile. Following its favorable dose prediction to human, 22 has now progressed to phase 1 clinical trial as a potential future treatment for refractory ovarian cancer and other malignancies.
Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Factores de Transcripción/metabolismo , Neoplasias Ováricas/patología , Línea Celular Tumoral , Antineoplásicos/farmacologíaRESUMEN
By suppressing gene transcription through the recruitment of corepressor proteins, B-cell lymphoma 6 (BCL6) protein controls a transcriptional network required for the formation and maintenance of B-cell germinal centres. As BCL6 deregulation is implicated in the development of Diffuse Large B-Cell Lymphoma, we sought to discover novel small molecule inhibitors that disrupt the BCL6-corepressor protein-protein interaction (PPI). Here we report our hit finding and compound optimisation strategies, which provide insight into the multi-faceted orthogonal approaches that are needed to tackle this challenging PPI with small molecule inhibitors. Using a 1536-well plate fluorescence polarisation high throughput screen we identified multiple hit series, which were followed up by hit confirmation using a thermal shift assay, surface plasmon resonance and ligand-observed NMR. We determined X-ray structures of BCL6 bound to compounds from nine different series, enabling a structure-based drug design approach to improve their weak biochemical potency. We developed a time-resolved fluorescence energy transfer biochemical assay and a nano bioluminescence resonance energy transfer cellular assay to monitor cellular activity during compound optimisation. This workflow led to the discovery of novel inhibitors with respective biochemical and cellular potencies (IC50s) in the sub-micromolar and low micromolar range.
Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Cristalografía por Rayos X , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Linfoma de Células B Grandes Difuso/patología , Diseño de Fármacos , LigandosRESUMEN
To identify new chemical series with enhanced binding affinity to the BTB domain of B-cell lymphoma 6 protein, we targeted a subpocket adjacent to Val18. With no opportunities for strong polar interactions, we focused on attaining close shape complementarity by ring fusion onto our quinolinone lead series. Following exploration of different sized rings, we identified a conformationally restricted core which optimally filled the available space, leading to potent BCL6 inhibitors. Through X-ray structure-guided design, combined with efficient synthetic chemistry to make the resulting novel core structures, a >300-fold improvement in activity was obtained by the addition of seven heavy atoms.
Asunto(s)
Dominio BTB-POZ , Unión Proteica , Proteínas Proto-Oncogénicas c-bcl-6RESUMEN
The transcriptional repressor BCL6 is an oncogenic driver found to be deregulated in lymphoid malignancies. Herein, we report the optimization of our previously reported benzimidazolone molecular glue-type degrader CCT369260 to CCT373566, a highly potent probe suitable for sustained depletion of BCL6 in vivo. We observed a sharp degradation SAR, where subtle structural changes conveyed the ability to induce degradation of BCL6. CCT373566 showed modest in vivo efficacy in a lymphoma xenograft mouse model following oral dosing.
Asunto(s)
Carcinogénesis , Regulación Neoplásica de la Expresión Génica , Animales , Humanos , Ratones , Proteínas Proto-Oncogénicas c-bcl-6/metabolismoRESUMEN
Human xenografts are extremely useful models to study the biology of human cancers and the effects of novel potential therapies. Deregulation of metabolism, including changes in amino acids (AAs), is a common characteristic of many human neoplasms. Plasma AAs undergo daily variations, driven by circadian endogenous and exogenous factors. We compared AAs concentration in triple negative breast cancer MDA-MB-231 cells and MCF10A non-tumorigenic immortalized breast epithelial cells. We also measured plasma AAs in mice bearing xenograft MDA-MB-231 and compared their levels with non-tumor-bearing control animals over 24 h. In vitro studies revealed that most of AAs were significantly different in MDA-MB-231 cells when compared with MCF10A. Plasma concentrations of 15 AAs were higher in cancer cells, two were lower and four were observed to shift across 24 h. In the in vivo setting, analysis showed that 12 out of 20 AAs varied significantly between tumor-bearing and non-tumor bearing mice. Noticeably, these metabolites peaked in the dark phase in non-tumor bearing mice, which corresponds to the active time of these animals. Conversely, in tumor-bearing mice, the peak time occurred during the light phase. In the early period of the light phase, these AAs were significantly higher in tumor-bearing animals, yet significantly lower in the middle of the light phase when compared with controls. This pilot study highlights the importance of well controlled experiments in studies involving plasma AAs in human breast cancer xenografts, in addition to emphasizing the need for more precise examination of exometabolomic changes using multiple time points.
Asunto(s)
Aminoácidos/sangre , Ritmo Circadiano/fisiología , Neoplasias Mamarias Experimentales/fisiopatología , Neoplasias de la Mama Triple Negativas/fisiopatología , Aminoácidos/metabolismo , Animales , Neoplasias de la Mama/fisiopatología , Línea Celular , Línea Celular Tumoral , Femenino , Humanos , Ratones , Trasplante de Neoplasias , Proyectos PilotoRESUMEN
Rhabdomyosarcomas are aggressive pediatric soft-tissue sarcomas and include high-risk PAX3-FOXO1 fusion-gene-positive cases. Fibroblast growth factor receptor 4 (FGFR4) is known to contribute to rhabdomyosarcoma progression; here, we sought to investigate the involvement and potential for therapeutic targeting of other FGFRs in this disease. Cell-based screening of FGFR inhibitors with potential for clinical repurposing (NVP-BGJ398, nintedanib, dovitinib, and ponatinib) revealed greater sensitivity of fusion-gene-positive versus fusion-gene-negative rhabdomyosarcoma cell lines and was shown to be correlated with high expression of FGFR2 and its specific ligand, FGF7. Furthermore, patient samples exhibit higher mRNA levels of FGFR2 and FGF7 in fusion-gene-positive versus fusion-gene-negative rhabdomyosarcomas. Sustained intracellular mitogen-activated protein kinase (MAPK) activity and FGF7 secretion into culture media during serum starvation of PAX3-FOXO1 rhabdomyosarcoma cells together with decreased cell viability after genetic silencing of FGFR2 or FGF7 was in keeping with a novel FGF7-FGFR2 autocrine loop. FGFR inhibition with NVP-BGJ398 reduced viability and was synergistic with SN38, the active metabolite of irinotecan. In vivo, NVP-BGJ398 abrogated xenograft growth and warrants further investigation in combination with irinotecan as a therapeutic strategy for fusion-gene-positive rhabdomyosarcomas.
Asunto(s)
Comunicación Autocrina , Rabdomiosarcoma , Línea Celular Tumoral , Niño , Resistencia a Antineoplásicos , Factor 7 de Crecimiento de Fibroblastos , Humanos , Irinotecán , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/genéticaRESUMEN
Somatic mutations in ACVR1 are found in a quarter of children with diffuse intrinsic pontine glioma (DIPG), but there are no ACVR1 inhibitors licensed for the disease. Using an artificial intelligence-based platform to search for approved compounds for ACVR1-mutant DIPG, the combination of vandetanib and everolimus was identified as a possible therapeutic approach. Vandetanib, an inhibitor of VEGFR/RET/EGFR, was found to target ACVR1 (K d = 150 nmol/L) and reduce DIPG cell viability in vitro but has limited ability to cross the blood-brain barrier. In addition to mTOR, everolimus inhibited ABCG2 (BCRP) and ABCB1 (P-gp) transporters and was synergistic in DIPG cells when combined with vandetanib in vitro. This combination was well tolerated in vivo and significantly extended survival and reduced tumor burden in an orthotopic ACVR1-mutant patient-derived DIPG xenograft model. Four patients with ACVR1-mutant DIPG were treated with vandetanib plus an mTOR inhibitor, informing the dosing and toxicity profile of this combination for future clinical studies. SIGNIFICANCE: Twenty-five percent of patients with the incurable brainstem tumor DIPG harbor somatic activating mutations in ACVR1, but there are no approved drugs targeting the receptor. Using artificial intelligence, we identify and validate, both experimentally and clinically, the novel combination of vandetanib and everolimus in these children based on both signaling and pharmacokinetic synergies.This article is highlighted in the In This Issue feature, p. 275.
Asunto(s)
Receptores de Activinas Tipo I/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Everolimus/uso terapéutico , Glioma/tratamiento farmacológico , Piperidinas/uso terapéutico , Quinazolinas/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias del Tronco Encefálico/mortalidad , Niño , Preescolar , Reposicionamiento de Medicamentos , Everolimus/administración & dosificación , Femenino , Glioma/mortalidad , Humanos , Masculino , Ratones , Ratones SCID , Piperidinas/administración & dosificación , Quinazolinas/administración & dosificación , Ratas , Resultado del TratamientoRESUMEN
We describe the optimization of modestly active starting points to potent inhibitors of BCL6 by growing into a subpocket, which was occupied by a network of five stably bound water molecules. Identifying potent inhibitors required not only forming new interactions in the subpocket but also perturbing the water network in a productive, potency-increasing fashion while controlling the physicochemical properties. We achieved this goal in a sequential manner by systematically probing the pocket and the water network, ultimately achieving a 100-fold improvement of activity. The most potent compounds displaced three of the five initial water molecules and formed hydrogen bonds with the remaining two. Compound 25 showed a promising profile for a lead compound with submicromolar inhibition of BCL6 in cells and satisfactory pharmacokinetic (PK) properties. Our work highlights the importance of finding productive ways to perturb existing water networks when growing into solvent-filled protein pockets.
Asunto(s)
Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Antineoplásicos/química , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Solubilidad , Relación Estructura-ActividadRESUMEN
Recurrence of prostate cancer after radical prostatectomy is a consequence of incomplete tumor resection. Systemic chemotherapy after surgery is associated with significant toxicity. Improved delivery methods for toxic drugs capable of targeting positive resection margins can reduce tumor recurrence and avoid their known toxicity. This study evaluates the effectiveness and toxicity of docetaxel (DTX) release from highly porous biodegradable microparticles intended for delivery into the tissue cavity created during radical prostatectomy to target residual tumor cells. The microparticles, composed of poly(dl-lactide-co-glycolide) (PLGA), are processed using thermally induced phase separation (TIPS) and loaded with DTX via antisolvent precipitation. Sustained drug release and effective toxicity in vitro are observed against PC3 human prostate cells. Peritumoral injection in a PC3 xenograft tumor model results in tumor growth inhibition equivalent to that achieved with intravenous delivery of DTX. Unlike intravenous delivery of DTX, implantation of DTX-TIPS microparticles is not accompanied by toxicity or elevated systemic levels of DTX in organ tissues or plasma. DTX-TIPS microparticles provide localized and sustained release of nontoxic therapeutic amounts of DTX. This may offer novel therapeutic strategies for improving management of patients with clinically localized high-risk disease requiring radical prostatectomy and other solid cancers at high risk of positive resection margins.
RESUMEN
Cyclin-dependent kinase 4/6 (CDK4/6) and PI3K inhibitors synergize in PIK3CA-mutant ER-positive HER2-negative breast cancer models. We conducted a phase Ib trial investigating the safety and efficacy of doublet CDK4/6 inhibitor palbociclib plus selective PI3K inhibitor taselisib in advanced solid tumors, and triplet palbociclib plus taselisib plus fulvestrant in 25 patients with PIK3CA-mutant, ER-positive HER2-negative advanced breast cancer. The triplet therapy response rate in PIK3CA-mutant, ER-positive HER2-negative cancer was 37.5% [95% confidence interval (CI), 18.8-59.4]. Durable disease control was observed in PIK3CA-mutant ER-negative breast cancer and other solid tumors with doublet therapy. Both combinations were well tolerated at pharmacodynamically active doses. In the triplet group, high baseline cyclin E1 expression associated with shorter progression-free survival (PFS; HR = 4.2; 95% CI, 1.3-13.1; P = 0.02). Early circulating tumor DNA (ctDNA) dynamics demonstrated high on-treatment ctDNA association with shorter PFS (HR = 5.2; 95% CI, 1.4-19.4; P = 0.04). Longitudinal plasma ctDNA sequencing provided genomic evolution evidence during triplet therapy. SIGNIFICANCE: The triplet of palbociclib, taselisib, and fulvestrant has promising efficacy in patients with heavily pretreated PIK3CA-mutant ER-positive HER2-negative advanced breast cancer. A subset of patients with PIK3CA-mutant triple-negative breast cancer derived clinical benefit from palbociclib and taselisib doublet, suggesting a potential nonchemotherapy targeted approach for this population.This article is highlighted in the In This Issue feature, p. 1.
Asunto(s)
Neoplasias de la Mama , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Fulvestrant , Humanos , Imidazoles , Oxazepinas , Fosfatidilinositol 3-Quinasas , Piperazinas , Piridinas , Receptor ErbB-2/genéticaRESUMEN
PURPOSE: AT13148 is an oral AGC kinase inhibitor, which potently inhibits ROCK and AKT kinases. In preclinical models, AT13148 has been shown to have antimetastatic and antiproliferative activity. PATIENTS AND METHODS: The trial followed a rolling six design during dose escalation. An intrapatient dose escalation arm to evaluate tolerability and a biopsy cohort to study pharmacodynamic effects were later added. AT13148 was administered orally three days a week (Mon-Wed-Fri) in 28-day cycles. Pharmacokinetic profiles were assessed using mass spectrometry and pharmacodynamic studies included quantifying p-GSK3ß levels in platelet-rich plasma (PRP) and p-cofilin and p-MLC2 levels in tumor biopsies. RESULTS: Fifty-one patients were treated on study. The safety of 5-300 mg of AT13148 was studied. Further, the doses of 120-180-240 mg were studied in an intrapatient dose escalation cohort. The dose-limiting toxicities included hypotension (300 mg), pneumonitis, and elevated liver enzymes (240 mg), and skin rash (180 mg). The most common side effects were fatigue, nausea, headaches, and hypotension. On the basis of tolerability, 180 mg was considered the maximally tolerated dose. At 180 mg, mean C max and AUC were 400 nmol/L and 13,000 nmol/L/hour, respectively. At 180 mg, ≥50% reduction of p-cofilin was observed in 3 of 8 posttreatment biopsies. CONCLUSIONS: AT13148 was the first dual potent ROCK-AKT inhibitor to be investigated for the treatment of solid tumors. The narrow therapeutic index and the pharmacokinetic profile led to recommend not developing this compound further. There are significant lessons learned in designing and testing agents that simultaneously inhibit multiple kinases including AGC kinases in cancer.
Asunto(s)
2-Hidroxifenetilamina/análogos & derivados , Antineoplásicos/efectos adversos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/efectos adversos , Pirazoles/efectos adversos , 2-Hidroxifenetilamina/administración & dosificación , 2-Hidroxifenetilamina/efectos adversos , 2-Hidroxifenetilamina/farmacocinética , Adulto , Anciano , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Relación Dosis-Respuesta a Droga , Erupciones por Medicamentos/epidemiología , Erupciones por Medicamentos/etiología , Femenino , Cefalea/inducido químicamente , Cefalea/epidemiología , Humanos , Hiperglucemia/inducido químicamente , Hiperglucemia/epidemiología , Hipotensión/inducido químicamente , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Neoplasias/sangre , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pirazoles/administración & dosificación , Pirazoles/farmacocinética , Quinasas Asociadas a rho/antagonistas & inhibidoresRESUMEN
Preclinical studies have demonstrated synergy between PARP and PI3K/AKT pathway inhibitors in BRCA1 and BRCA2 (BRCA1/2)-deficient and BRCA1/2-proficient tumors. We conducted an investigator-initiated phase I trial utilizing a prospective intrapatient dose- escalation design to assess two schedules of capivasertib (AKT inhibitor) with olaparib (PARP inhibitor) in 64 patients with advanced solid tumors. Dose expansions enrolled germline BRCA1/2-mutant tumors, or BRCA1/2 wild-type cancers harboring somatic DNA damage response (DDR) or PI3K-AKT pathway alterations. The combination was well tolerated. Recommended phase II doses for the two schedules were: olaparib 300 mg twice a day with either capivasertib 400 mg twice a day 4 days on, 3 days off, or capivasertib 640 mg twice a day 2 days on, 5 days off. Pharmacokinetics were dose proportional. Pharmacodynamic studies confirmed phosphorylated (p) GSK3ß suppression, increased pERK, and decreased BRCA1 expression. Twenty-five (44.6%) of 56 evaluable patients achieved clinical benefit (RECIST complete response/partial response or stable disease ≥ 4 months), including patients with tumors harboring germline BRCA1/2 mutations and BRCA1/2 wild-type cancers with or without DDR and PI3K-AKT pathway alterations. SIGNIFICANCE: In the first trial to combine PARP and AKT inhibitors, a prospective intrapatient dose- escalation design demonstrated safety, tolerability, and pharmacokinetic-pharmacodynamic activity and assessed predictive biomarkers of response/resistance. Antitumor activity was observed in patients harboring tumors with germline BRCA1/2 mutations and BRCA1/2 wild-type cancers with or without somatic DDR and/or PI3K-AKT pathway alterations.This article is highlighted in the In This Issue feature, p. 1426.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Pirimidinas/uso terapéutico , Pirroles/uso terapéutico , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Femenino , Humanos , Persona de Mediana Edad , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacologíaRESUMEN
Deregulation of the transcriptional repressor BCL6 enables tumorigenesis of germinal center B-cells, and hence BCL6 has been proposed as a therapeutic target for the treatment of diffuse large B-cell lymphoma (DLBCL). Herein we report the discovery of a series of benzimidazolone inhibitors of the protein-protein interaction between BCL6 and its co-repressors. A subset of these inhibitors were found to cause rapid degradation of BCL6, and optimization of pharmacokinetic properties led to the discovery of 5-((5-chloro-2-((3R,5S)-4,4-difluoro-3,5-dimethylpiperidin-1-yl)pyrimidin-4-yl)amino)-3-(3-hydroxy-3-methylbutyl)-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (CCT369260), which reduces BCL6 levels in a lymphoma xenograft mouse model following oral dosing.
Asunto(s)
Bencimidazoles/administración & dosificación , Bencimidazoles/química , Sistemas de Liberación de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Proteínas Proto-Oncogénicas c-bcl-6/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
INTRODUCTION: To generate biomarkers of target engagement or predictive response for multi-target drugs is challenging. One such compound is the multi-AGC kinase inhibitor AT13148. Metabolic signatures of selective signal transduction inhibitors identified in preclinical models have previously been confirmed in early clinical studies. This study explores whether metabolic signatures could be used as biomarkers for the multi-AGC kinase inhibitor AT13148. OBJECTIVES: To identify metabolomic changes of biomarkers of multi-AGC kinase inhibitor AT13148 in cells, xenograft / mouse models and in patients in a Phase I clinical study. METHODS: HILIC LC-MS/MS methods and Biocrates AbsoluteIDQ™ p180 kit were used for targeted metabolomics; followed by multivariate data analysis in SIMCA and statistical analysis in Graphpad. Metaboanalyst and String were used for network analysis. RESULTS: BT474 and PC3 cells treated with AT13148 affected metabolites which are in a gene protein metabolite network associated with Nitric oxide synthases (NOS). In mice bearing the human tumour xenografts BT474 and PC3, AT13148 treatment did not produce a common robust tumour specific metabolite change. However, AT13148 treatment of non-tumour bearing mice revealed 45 metabolites that were different from non-treated mice. These changes were also observed in patients at doses where biomarker modulation was observed. Further network analysis of these metabolites indicated enrichment for genes associated with the NOS pathway. The impact of AT13148 on the metabolite changes and the involvement of NOS-AT13148- Asymmetric dimethylarginine (ADMA) interaction were consistent with hypotension observed in patients in higher dose cohorts (160-300 mg). CONCLUSION: AT13148 affects metabolites associated with NOS in cells, mice and patients which is consistent with the clinical dose-limiting hypotension.
Asunto(s)
2-Hidroxifenetilamina/análogos & derivados , Antineoplásicos/metabolismo , Metabolómica , Óxido Nítrico Sintasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/metabolismo , Pirazoles/metabolismo , 2-Hidroxifenetilamina/administración & dosificación , 2-Hidroxifenetilamina/metabolismo , 2-Hidroxifenetilamina/farmacología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Biomarcadores de Tumor/sangre , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Femenino , Glucógeno Sintasa Quinasa 3 beta/sangre , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Óxido Nítrico Sintasa/metabolismo , Células PC-3 , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazoles/administración & dosificación , Pirazoles/farmacologíaRESUMEN
Internal tandem duplication of FLT3 (FLT3-ITD) is one of the most common somatic mutations in acute myeloid leukemia (AML); it causes constitutive activation of FLT3 kinase and is associated with high relapse rates and poor survival. Small-molecule inhibition of FLT3 represents an attractive therapeutic strategy for this subtype of AML, although resistance from secondary FLT3 tyrosine kinase domain (FLT3-TKD) mutations is an emerging clinical problem. CCT241736 is an orally bioavailable, selective, and potent dual inhibitor of FLT3 and Aurora kinases. FLT3-ITD+ cells with secondary FLT3-TKD mutations have high in vitro relative resistance to the FLT3 inhibitors quizartinib and sorafenib, but not to CCT241736. The mechanism of action of CCT241736 results in significant in vivo efficacy, with inhibition of tumor growth observed in efficacy studies in FLT3-ITD and FLT3-ITD-TKD human tumor xenograft models. The efficacy of CCT241736 was also confirmed in primary samples from AML patients, including those with quizartinib-resistant disease, which induces apoptosis through inhibition of both FLT3 and Aurora kinases. The unique combination of CCT241736 properties based on robust potency, dual selectivity, and significant in vivo activity indicate that CCT241736 is a bona fide clinical drug candidate for FLT3-ITD and TKD AML patients with resistance to current drugs.
Asunto(s)
Leucemia Mieloide Aguda , Compuestos de Fenilurea , Aurora Quinasas , Benzotiazoles , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Tirosina Quinasa 3 Similar a fms/genéticaRESUMEN
Macroautophagy/autophagy can enable cancer cells to withstand cellular stress and maintain bioenergetic homeostasis by sequestering cellular components into newly formed double-membrane vesicles destined for lysosomal degradation, potentially affecting the efficacy of anti-cancer treatments. Using 13C-labeled choline and 13C-magnetic resonance spectroscopy and western blotting, we show increased de novo choline phospholipid (ChoPL) production and activation of PCYT1A (phosphate cytidylyltransferase 1, choline, alpha), the rate-limiting enzyme of phosphatidylcholine (PtdCho) synthesis, during autophagy. We also discovered that the loss of PCYT1A activity results in compromised autophagosome formation and maintenance in autophagic cells. Direct tracing of ChoPLs with fluorescence and immunogold labeling imaging revealed the incorporation of newly synthesized ChoPLs into autophagosomal membranes, endoplasmic reticulum (ER) and mitochondria during anticancer drug-induced autophagy. Significant increase in the colocalization of fluorescence signals from the newly synthesized ChoPLs and mCherry-MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) was also found on autophagosomes accumulating in cells treated with autophagy-modulating compounds. Interestingly, cells undergoing active autophagy had an altered ChoPL profile, with longer and more unsaturated fatty acid/alcohol chains detected. Our data suggest that de novo synthesis may be required to increase autophagosomal ChoPL content and alter its composition, together with replacing phospholipids consumed from other organelles during autophagosome formation and turnover. This addiction to de novo ChoPL synthesis and the critical role of PCYT1A may lead to development of agents targeting autophagy-induced drug resistance. In addition, fluorescence imaging of choline phospholipids could provide a useful way to visualize autophagosomes in cells and tissues. ABBREVIATIONS: AKT: AKT serine/threonine kinase; BAX: BCL2 associated X, apoptosis regulator; BECN1: beclin 1; ChoPL: choline phospholipid; CHKA: choline kinase alpha; CHPT1: choline phosphotransferase 1; CTCF: corrected total cell fluorescence; CTP: cytidine-5'-triphosphate; DCA: dichloroacetate; DMEM: dulbeccos modified Eagles medium; DMSO: dimethyl sulfoxide; EDTA: ethylenediaminetetraacetic acid; ER: endoplasmic reticulum; GDPD5: glycerophosphodiester phosphodiesterase domain containing 5; GFP: green fluorescent protein; GPC: glycerophosphorylcholine; HBSS: hanks balances salt solution; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LPCAT1: lysophosphatidylcholine acyltransferase 1; LysoPtdCho: lysophosphatidylcholine; MRS: magnetic resonance spectroscopy; MTORC1: mechanistic target of rapamycin kinase complex 1; PCho: phosphocholine; PCYT: choline phosphate cytidylyltransferase; PLA2: phospholipase A2; PLB: phospholipase B; PLC: phospholipase C; PLD: phospholipase D; PCYT1A: phosphate cytidylyltransferase 1, choline, alpha; PI3K: phosphoinositide-3-kinase; pMAFs: pancreatic mouse adult fibroblasts; PNPLA6: patatin like phospholipase domain containing 6; Pro-Cho: propargylcholine; Pro-ChoPLs: propargylcholine phospholipids; PtdCho: phosphatidylcholine; PtdEth: phosphatidylethanolamine; PtdIns3P: phosphatidylinositol-3-phosphate; RPS6: ribosomal protein S6; SCD: stearoyl-CoA desaturase; SEM: standard error of the mean; SM: sphingomyelin; SMPD1/SMase: sphingomyelin phosphodiesterase 1, acid lysosomal; SGMS: sphingomyelin synthase; WT: wild-type.
Asunto(s)
Antineoplásicos/farmacología , Autofagosomas/enzimología , Autofagosomas/metabolismo , Citidililtransferasa de Colina-Fosfato/metabolismo , Furanos/farmacología , Macroautofagia , Fosfatidilcolinas/biosíntesis , Piridinas/farmacología , Pirimidinas/farmacología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/ultraestructura , Células CHO , Línea Celular Tumoral , Colina/metabolismo , Citidililtransferasa de Colina-Fosfato/genética , Cricetulus , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/enzimología , Membranas Intracelulares/metabolismo , Macroautofagia/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metabolómica , Ratones , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismoRESUMEN
Disruption to sleep and circadian rhythms can impact on metabolism. The study aimed to investigate the effect of acute sleep deprivation on plasma melatonin, cortisol and metabolites, to increase understanding of the metabolic pathways involved in sleep/wake regulation processes. Twelve healthy young female participants remained in controlled laboratory conditions for ~92 hr with respect to posture, meals and environmental light (18:00-23:00 hr and 07:00-09:00 hr <8 lux; 23:00-07:00 hr 0 lux (sleep opportunity) or <8 lux (continuous wakefulness); 09:00-18:00 hr ~90 lux). Regular blood samples were collected for 70 hr for plasma melatonin and cortisol, and targeted liquid chromatography-mass spectrometry metabolomics. Timepoints between 00:00 and 06:00 hr for day 1 (baseline sleep), day 2 (sleep deprivation) and day 3 (recovery sleep) were analysed. Cosinor analysis and MetaCycle analysis were performed for detection of rhythmicity. Night-time melatonin levels were significantly increased during sleep deprivation and returned to baseline levels during recovery sleep. No significant differences were observed in cortisol levels. Of 130 plasma metabolites quantified, 41 metabolites were significantly altered across the study nights, with the majority decreasing during sleep deprivation, most notably phosphatidylcholines. In cosinor analysis, 58 metabolites maintained their rhythmicity across the study days, with the majority showing a phase advance during acute sleep deprivation. This observation differs to that previously reported for males. Our study is the first of metabolic profiling in females during sleep deprivation and recovery sleep, and offers a novel view of human sleep/wake regulation and sex differences.