Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Small ; : e2311427, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733219

RESUMEN

MXene-based photocatalytic membranes provide significant benefits for wastewater treatment by effectively combining membrane separation and photocatalytic degradation processes. MXene represents a pioneering 2D photocatalyst with a variable elemental composition, substantial surface area, abundant surface terminations, and exceptional photoelectric performance, offering significant advantages in producing high-performance photocatalytic membranes. In this review, an in-depth overview of the latest scientific progress in MXene-based photocatalytic membranes is provided. Initially, a brief introduction to the structure and photocatalytic capabilities of MXene is provided, highlighting their pivotal role in promoting the photocatalytic process. Subsequently, in pursuit of the optimal MXene-based photocatalytic membrane, critical factors such as the morphology, hydrophilicity, and stability of MXenes are meticulously taken into account. Various preparation strategies for MXene-based photocatalytic membranes, including blending, vacuum filtration, and dip coating, are also discussed. Furthermore, the application and mechanism of MXene-based photocatalytic membranes in micropollutant removal, oil-water separation, and antibacterial are examined. Lastly, the challenges in the development and practical application of MXene-based photocatalytic membranes, as well as their future research direction are delineated.

2.
Int J Biol Macromol ; 261(Pt 1): 129146, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176489

RESUMEN

The study explores the synergy of biobased polymers and hydrogels for water purification. Polymer nanomaterial's, synthesized by combining acrylamide copolymer with maleic anhydride, were integrated into sodium alginate biopolymer using an eco-friendly approach. Crosslinking agents, calcium chloride and glutaraladehyde, facilitated seamless integration, ensuring non-toxicity, high adsorption performance, and controlled capacity. This innovative combination presents a promising solution for clean and healthy water supplies, addressing the critical need for sustainable environmental practices in water purification. In addition, the polymer sodium alginate hydrogel (MAH@AA-P/SA/H) underwent characterization via the use of several analytical procedures, such as FTIR, XPS, SEM, EDX and XRD. Adsorption studies were conducted on metals and dyes in water, and pollutant removal methods were explored. We investigated several variables (such as pH, starting concentration, duration, and absorbent quantity) affect a material's capacity to be adsorbed. Moreover, the maximum adsorption towards Cu2+ is 754 mg/g while for Cr6+ metal ions are 738 mg/g, while the adsorption towards Congo Red and Methylene Blue dye are 685 mg/g and 653 mg/g correspondingly, within 240 min. Adsorption results were further analyzed using kinetic and isothermal models, which showed that MAH@AA-P/SA/H adsorption is governed by a chemisorption process. Hence, the polymer prepared from sodium alginate hydrogel (MAH@AA-P/SA/H) has remarkable properties as a versatile material for the significantly elimination of harmful contaminants from dirty water.


Asunto(s)
Hidrogeles , Contaminantes Químicos del Agua , Hidrogeles/química , Anhídridos Maleicos , Colorantes/química , Alginatos/química , Acrilamida , Metales , Iones , Polímeros , Adsorción , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Cinética
4.
Int J Biol Macromol ; 254(Pt 2): 127153, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37778574

RESUMEN

Clean and safe water resources are essential for environmental safety and human health. Hydrogels and biomass polymers have attracted considerable attention in recent years, considering their nontoxicity, controllable performance, and high adsorption capacity. The interpenetrating network described here is a combination of a biomass polymer and a hydrogel adsorbent was established, the biomass polymer microspheres were first prepared with the combination of biomass monomer trans-anethole and maleic anhydride copolymer. A simple, environmentally friendly, and facile method of incorporating biomass polymer into sodium alginate biopolymer was developed by introducing the cross-linking agents calcium chloride and glutaraldehyde into the biomass polymer. Furthermore, the biomass polymer sodium alginate hydrogel (BP@SA/H) was characterized by FTIR, XPS, SEM, and XRD. In order to test materials' performance, the removal of pollutants and the adsorption study were also investigated after and before adsorption toward metals and dyes in water. We examined the factors influencing the materials, adsorption capability, such as initial concentration, time, absorbent amount, and pH. Moreover, the maximum adsorption values for Pb+2 and Cd+2 were 734.9 and 722 mg/g. While the adsorption toward RhB dye are 745 mg/g. In addition, the adsorption results were investigated using kinetic and isothermal models, demonstrating that biomass polymer hydrogel adsorption is chemisorption. Therefore, the as-developed biomass polymer sodium alginate hydrogel (BP@SA/H) is an exceptional multifunctional material that can be used to remove hazardous pollutants from wastewater.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Aguas Residuales , Colorantes/química , Polímeros/química , Hidrogeles/química , Alginatos/química , Metales , Adsorción , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Cinética
5.
Molecules ; 28(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836691

RESUMEN

Coordination polymers (CPs) are a diverse class of multi-dimensional compounds that show promise as photocatalysts for degrading dyes in polluted water. Herein, a new 1D Cd(II)-based coordination polymer with the formula [Cd(bpyp)(nba)2] (1) (bpyp = 2,5-bis(pyrid-4-yl)pyridine and Hnba = 4-nitrobenzoic acid) is synthesized and characterized. In 1, the two carboxyl groups of two different nba- ligands show µ2-η1:η1 and µ1-η1:η1 coordination modes to connect the CdII centers and sit on either side of the chain along the b direction. The produced CP 1 was utilized as the photocatalyst in the process of the photodegradation of methyl blue (MB), methyl orange (MO), rhodamine B (RhB), and methyl violet (MV) dyes when exposed to UV light. The photocatalytic degradation activities of CP 1 were analyzed, and the results suggest that it exhibits an extraordinary efficiency in the degradation of MB, MV, MO, and RhB. RhB has a 95.52% efficiency of degradation, whereas MV has a 58.92% efficiency, MO has 35.44%, and MB has 29.24%. The photodecomposition of dyes is catalyzed mostly by •O2- and •OH-, as shown by research involving the trapping of radicals.

6.
Int J Biol Macromol ; 253(Pt 4): 126986, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37739285

RESUMEN

The presence of pollutants in drinking water has become a significant concern recently. Various substances, including activated carbon, membranes, biochar, etc., are used to remove these pollutants. In the present study, a new composite comprising cotton fabric and a mixture of Metal-Organic Frameworks (MOFs) was synthesized and used as an adsorbent for eliminating pollutants from wastewater. At first, the UiO-66 MOFs were prepared by a simple method of reacting Zirconium (IV) chloride (ZrCl4) and p-Phthalic acid (PTA) after successful preparation of UiO-66 then modified its surface with amino functional groups by reacting with APTES to obtain UiO-66-NH2. Moreover, the cellulose cotton fabric (CF) surface was modified with Polydopamine (PDA) and obtained CF@PDA. Further, with the help of EDC-HCl and NHS, the UiO-66-NH2 grafted on the surface of the CF@PDA and finally obtained CF@PDA/UiO-66-NH2. In addition, the adsorption study was performed toward RhB dye and Pb(II) metal ion pollutants. The maximum adsorption toward RhB dye was 68.5 mg/g, while toward Pb(II) metal ions was 65 mg/g. In addition, the kinetic study was also conducted and the result favoured the Pseudo-second order kinetic study. The adsorption isotherm was also studied and the Langmuir model was more fitted as compared with the Freundlich model. Moreover, the material has excellent regeneration and recycling ability after ten cycles. The significant adsorption ability, the novel combination of cotton and MOFs, and the recycling feature make our material CF@PDA/UiO-66-NH2 a promising potential absorbent material for wastewater treatment and even in other important areas of water research.


Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Compuestos Organometálicos , Contaminantes Químicos del Agua , Aguas Residuales , Plomo , Celulosa , Iones , Adsorción
7.
Expert Opin Drug Deliv ; 20(9): 1209-1229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37776531

RESUMEN

INTRODUCTION: Porous coordination networks (PCNs) have been widely used in large number of applications such as light harvesting, catalysis, and biomedical applications. Inserting porphyrins into PCNs scaffolds can alleviate the solubility and chemical stability problems associated with porphyrin ligands and add functionality to PCNs. The discovery that some PCNs materials have photosensitizer and acoustic sensitizer properties has attracted significant attention in the field of biomedicine, particularly in cancer therapy. This article describes the latest applications of the porphyrin ligand-based family of PCNs in cancer chemodynamic therapy (CDT), photodynamic therapy (PDT), sonodynamic therapy (SDT), photothermal therapy (PTT), and combination therapies and offers some observations and reflections on them. AREAS COVERED: This article discusses the use of the PCN family of MOFs in cancer treatment, specifically focusing on chemodynamic therapy, sonodynamic therapy, photodynamic therapy, photothermal therapy, and combination therapy. EXPERT OPINION: Although a large number of PCNs have been developed for use in novel cancer therapeutic approaches, further improvements are needed to advance the use of PCNs in the clinic. For example, the main mechanism of action of PCNs against cancer and the metabolic processes in organisms, and how to construct PCNs that maintain good stability in the complex environment of organisms.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Porfirinas/uso terapéutico , Porfirinas/química , Porfirinas/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/tratamiento farmacológico
8.
Sci Rep ; 13(1): 12814, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550355

RESUMEN

The real world applications are more prone to difficulties of challenges due to fast growth of technologies and inclusion of artificial intelligence (AI) based logical solutions. The massive internet-of-things (IoT) devices are involved in number of Industry 5.0 applications like smart healthcare, smart manufacturing, smart agriculture, smart transportation. Advanced wireless techniques, customization of services and different technologies are experiencing a major transformation. The desire to increase the communication reliability without adding energy overhead is the major challenge for massive IoT enabled networks. To cope up with the above challenges, Industry 5.0 requirements needs to be monitored at the remote level which again adds on the communication challenge. Use of relays in 6G based wireless networks is denied due to high requirement of energy. Therefore in this paper, Intelligent reflecting surfaces (IRSs) assisted energy constrained 6G wireless networks are studied. To provide seamless connection between the communicating mobile nodes, IRS with an array of reflecting elements are configured in the system set up. A use-case scenario of IRS enabled network in Internet-of-Underwater things (IoUT) for smart ocean transportation is also provided. The IRS assisted wireless network is evaluated for target rates achieved. A power consumption model of the IRS supported system is also proposed to optimise the energy efficiency of the system. Further, the paper evaluates the impact of number of reflecting elements N on the IRS and the phase resolution b of each element on the system performance. The energy efficiency improves by 20% for IRS with [Formula: see text] with [Formula: see text] over IRS with [Formula: see text].

9.
Adv Colloid Interface Sci ; 319: 102969, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37598456

RESUMEN

Carbon materials technology provides the possibility of synthesizing low-cost, outstanding performance replacements to noble-metal catalysts for long-term use. Graphdiyne (GDY) is a carbon allotrope with an extremely thin atomic thickness. It consists of carbon elements, that are hybridized with both sp. and sp2, resulting in a multilayered two-dimensional (2D) configuration. Several functional models suggest, that GDY contains spontaneously existing band structure with Dirac poles. This is due to the non-uniform interaction among carbon atoms, which results from various fusions and overlapping of the 2pz subshell. Unlike other carbon allotropes, GDY has Dirac cone arrangements, that in turn give it inimitable physiochemical characteristics. These properties include an adjustable intrinsic energy gap, high speeds charging transport modulation efficiency, and exceptional conductance. Many scientists are interested in such novel, linear, stacked materials, including GDY. As a result, organized synthesis of GDY has been pursued, making it one of the first synthesized GDY materials. There are several methods to manipulate the band structure of GDY, including applying stresses, introducing boron/nitrogen loading, utilizing nanowires, and hydrogenations. The flexibility of GDY can be effectively demonstrated through the formation of nano walls, nanostructures, nanotube patterns, nanorods, or structured striped clusters. GDY, being a carbon material, has a wide range of applications owing to its remarkable structural and electrical characteristics. According to subsequent research, the GDY can be utilized in numerous energy generation processes, such as electrochemical water splitting (ECWS), photoelectrochemical water splitting (PEC WS), nitrogen reduction reaction (NRR), overall water splitting (OWS), oxygen reduction reaction (ORR), energy storage materials, lithium-Ion batteries (LiBs) and solar cell applications. These studies suggested that the use of GDY holds significant potential for the development and implementation of efficient, multimodal, and intelligent catalysts with realistic applications. However, the limitation of GDY and GDY-based composites for forthcoming studies are similarly acknowledged. The objective of these studies is to deliver a comprehensive knowledge of GDY and inspire further advancement and utilization of these unique carbon materials.

10.
Molecules ; 28(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985660

RESUMEN

In this study, various techniques, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and water-contact-angle goniometry (WCAG), were used to characterize the crystalline structure and morphological properties of terbium-doped cerium magnesium aluminate (Ce0.67Tb0.33MgAl11O19 or CMAT) in powder form. The results demonstrated that CMAT was successfully synthesized with a particle size of less than 5 µm and a fully evident distribution of elements, as revealed by the SEM images. This was further confirmed by the XRD and HRTEM images. XPS analysis confirmed the presence of all necessary components in CMAT. Additionally, WCAG results showed that the contact angle of CMAT was more hydrophilic with a value of 8.4°. To evaluate its performance, CMAT particles were dispersed in a Polyethersulfone (PES) solution and used to modify a PES ultrafiltration membrane through a phase-inversion method. The resulting membranes were characterized by SEM, atomic force microscopy (AFM), thermogravimetric analysis (TGA), WCAG, and permeability performance and fouling experiments. The addition of CMAT to the PES membranes did not have a significant effect on the structure of the SEM images of the top layer and cross-section of surface properties. However, increasing the concentration of CMAT improved the membrane surface roughness in AFM, and the modified membranes had the ability to resist fouling. The addition of CMAT did not lead to significant energy loss, indicating that the heat flux loss observed can indeed be explained by the amount of C-OH on the PES membrane's surface. The contact angle of the membranes became more hydrophilic with increasing concentration of CMAT from PES G0 to PES G7. The PES origin membrane showed a higher permeation than the membranes mixed with CMAT, and the modified membranes with CMAT displayed significant fouling resistance.

11.
Environ Res ; 221: 115213, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610540

RESUMEN

A special type of two-dimensional (2D) material based conducting polymer was constructed by green synthesis and in-situ polymerization techniques. The 2D Molybdenum Disulfide (MoS2) were first synthesized with the combination of, ammonium tetrathiomolybdate dissolved in 20 mL algae extract under stirring. After stirring for about 2 h, and then finally sulfurization was initiated using sulfur powder in 20 mL of sulfuric solution and stirred for 8 h. The resulting black precipitates of MoS2 were collected by centrifugation at 5000 rpm. Moreover, the prepared MoS2 was functionalized with glycidyl methacrylate (GMA) and form the MoS2@PGMA. Further, the MoS2@PGMA is combined with polyaniline (PANI) to form conducting polymer grafted thin film nanosheets named MoS2@PGMA/PANI with a thickness in micrometer size through grafting method. The prepared materials were characterized by SEM, FTIR, XRD, XPS and EDX techniques. To check the performance of materials the adsorption study was performed. Moreover, the adsorption study toward Cu2+ and Cd2+ showed a tremendous results and the maximum adsorption was 307.7 mg/g and 214.7 mg/g respectively. In addition, the pseudo-first and second order models as well as the adsorption isotherm were investigated using the Langmuir and Freundlich model. The results were best fitted with the pseudo-second order and Langmuir models. The regeneration study was also conducted and MoS2@PGMA/PANI nanosheets can be easily recycled and restored after five successful recycling. The established methodology for preparing the 2D materials and conducting polymer based MoS2@PGMA/PANI nanosheets is expected to be applicable for other multiple applications.


Asunto(s)
Molibdeno , Aguas Residuales , Metales , Polímeros , Iones
12.
Environ Res ; 220: 115135, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36566962

RESUMEN

The greatest environmental issue of the twenty-first century is climate change. Human-caused greenhouse gas emissions are increasing the frequency of extreme weather. Carbon dioxide (CO2) accounts for 80% of human greenhouse gas emissions. However, CO2 emissions and global temperature have risen steadily from pre-industrial times. Emissions data are crucial for most carbon emission policymaking and goal-setting. Sustainable and carbon-neutral sources must be used to create green energy and fossil-based alternatives to reduce our reliance on fossil fuels. Near-real-time monitoring of carbon emissions is a critical national concern and cutting-edge science. This review article provides an overview of the many carbon accounting systems that are now in use and are based on an annual time frame. The primary emphasis of the study is on the recently created carbon emission and eliminating sources and technology, as well as the current application trends for carbon neutrality. We also propose a framework for the most advanced naturally available carbon neutral accounting sources capable of being implemented on a large scale. Forming relevant data and procedures will help the "carbon neutrality" plan decision-making process. The formation of pertinent data and methodologies will give robust database support to the decision-making process for the "carbon neutrality" plan for the globe. In conclusion, this article offers some opinions, opportunities, challenges and future perspectives related to carbon neutrality and carbon emission monitoring and eliminating resources and technologies.


Asunto(s)
Dióxido de Carbono , Gases de Efecto Invernadero , Humanos , Dióxido de Carbono/análisis , Efecto Invernadero , Biodiversidad , Temperatura , Tecnología , Recursos Naturales
13.
Environ Res ; 219: 114998, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36481367

RESUMEN

BACKGROUND: An efficient solution to the global freshwater dilemma is desalination. MXene, Molybdenum Disulfide (MoS2), Graphene Oxide, Hexagonal Boron Nitride, and Phosphorene are just a few examples of two-dimensional (2D) materials that have shown considerable promise in the development of 2D materials for water desalination. However, other promising materials for desalinating water are biomaterials. The benefits of bio-materials are their wide distribution, lack of toxicity, and superior capacity for water desalination. METHODS: For the rational use of water and the advancement of sustainable development, it is of the utmost importance to research 2D-dimensional materials and biomaterials that are effective for water desalination. The scientific community has concentrated on wastewater remediation using bio-derived materials, such as nanocellulose, chitosan, bio-char, bark, and activated charcoal generated from plant sources, among the various endeavors to enhance access to clean water. Moreover, the 2D-materials and biomaterials may have ushered in a new age in the production of desalination materials and created a promising future. RESULTS: The present review article focuses on and reviews the progress of 2D materials and biomaterials for water desalination. Their properties, surface, and structure, combined with water desalination applications, are highlighted. Further, the practicability and potential future directions of 2D materials and biomaterials are proposed. Thus, the current work provides information and discernments for developing novel 2D materials and biomaterials for wastewater desalination. Moreover, it aims to promote the contribution and advancement of materials for water desalination, fabrication, and industrial production.


Asunto(s)
Quitosano , Agua , Aguas Residuales , Materiales Biocompatibles
14.
Environ Res ; 215(Pt 2): 113945, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36027965

RESUMEN

The stability and applicability of UiO-66-(NH2)2 metal-organic framework (MOF) nanoparticles (NPs) were successfully improved in this study by incorporating them into alginate biopolymer during the manifestation of crosslinking agents-calcium chloride and glutaraldehyde-via a simple, environment-friendly, and facile approach to eradicate potentially toxic metals (PTMs) such as Cr6+, Cr3+, Cu2+, and Cd2+ from water and real electroplating wastewater. Hydrophilic functional groups (i.e., -OH, -COOH, and -NH2) are imperative in the smooth loading of UiO-66-(NH2)2 MOF- NPs into three-dimensional (3-D) membrane capsules (MCs). The X-ray photoelectron spectroscopy (XPS) results suggested that UiO-66-(NH2)2 MOF was effectively bonded in/on the capsule via electrostatic crosslinking between -H3N+ and -COO-. Scanning electron microscopy results revealed a porous honeycomb configuration of the 3-D SGMMCs (S: sodium alginate, G: glutaraldehyde, M: MOF NPs, and MCs: membrane capsules). The maximum monolayer absorption capacities for Cr6+, Cr3+, Cu2+, and Cd2+ were 495, 975, 1295, and 1350 mg/g, respectively. The results of Fourier transform infrared spectroscopy and XPS analyses showed that electrostatic attraction and ion exchange were the main processes for PTM removal used by the as-developed 3-D SGMMCs. The as-developed 3-D SGMMCs exhibited outstanding selectivity for removing the targeted PTMs under the specified pH/conditions and maintained >80% removal efficiency for up to six consecutive treatment cycles. Notably, > 60% removal efficiencies for Cr6+ and Cu2+ were observed when treating real electroplating wastewater. Therefore, the as-developed 3-D SGMMCs can be used as an exceptional multifunctional sorbent to remove and recover PTMs from real electroplating wastewater.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Adsorción , Alginatos , Cadmio , Cloruro de Calcio , Cápsulas , Galvanoplastia , Glutaral , Concentración de Iones de Hidrógeno , Ácidos Ftálicos , Aguas Residuales/química , Agua , Contaminantes Químicos del Agua/análisis
15.
PLoS One ; 16(4): e0247320, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33909618

RESUMEN

The increase of social media (SM) has led to continuous deviations in how day-to-day entrepreneurial activities can be carried out. Additionally, studies devoted to SM entrepreneurship and SM are relatively limited and fragmented in their focus. However there is growing interest from scholars, practitioners and academia for upcoming studies and exploration within small and medium-sized enterprises (SMEs) context. This research explores the impact of entrepreneurial orientation (EO) on SM adoption and SME performance in developing countries. We employed the resource-based view (RBV) as the foundation for developing the conceptual framework The present study employed a closed-ended questionnaire to collect data from SMEs located in Pakistan. Partial-least-squares-structural equation-modeling (PLS-SEM) was utilized for the analysis of 423 responses. The results proved a direct positive link between EO-SMEs performance, EO-SM adoption, SM adoption-SMEs performance, innovation capabilities (IC), and SME performance. Partial mediation was found between EO and SME performance, and the significant moderation effect of IC was found between SM adoption and SME performance. This paper has implications for practitioners and researchers regarding SM adoption in the SMEs. It builds an empirical, multi-dimensional hypothesized model, including mediating and moderating roles affecting the relationships.


Asunto(s)
Emprendimiento , Modelos Teóricos , Medios de Comunicación Sociales , Humanos , Pakistán
16.
Case Rep Pediatr ; 2020: 8836534, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014498

RESUMEN

We report a case of a 17-month-old male with a history of developmental delay with poor muscle control, hepatomegaly, and transaminitis. Ultrasound of abdomen revealed hepatomegaly with a liver span of 13 cm, homogeneous parenchyma, and normal spleen size. Liver and muscle biopsies were obtained: the liver biopsy revealed distended hepatocytes with excessive glycogen accumulation and fine septate fibrosis. Biopsy of the right vastus lateralis muscle showed focal swollen glycogen containing mitochondria. For the developmental delay, a chromosomal microrarray was ordered. The chromosomal microarray revealed the patient to have 1q21 duplication syndrome and 16p11.2 deletion syndrome. Given the liver and muscle biopsy findings, a glycogen storage disease panel was sent which identified the patient to be hemizygous for a variant of uncertain significance denoted as p.Gly 131Val, c.392G > T in the PHKA2 gene. PKHA2 gene encodes the alpha subunit of hepatic phosphorylase kinase. This change in the PHKA2 gene was in a highly conserved region and had been reported in another patient with decreased enzymatic activity of the phosphorylase kinase and who had symptoms of GSD IX. Based on this, the patient was started on treatment for GSD IX, and his family met with a dietician.

17.
J Colloid Interface Sci ; 580: 822-833, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32731166

RESUMEN

A novel super-hydrophobic cotton material was fabricated via the grafting of PGMA polymer brush and the subsequent immobilization of ZnO nanoparticles and octyltriethoxysilane (OTES). The modified cotton showed a high water contact angle (WCA) of above 151° for all the water droplet with the pH ranging from 1 to 14, and was stable (WCA > 150°) in ammonia or acetic anhydride solutions. In addition, the tensile strength of the modified cotton was 2.05 times that of the original one. However, little change in the superhydrophobicity (WCA > 150°) was observed even after rubbing the modified cotton with 50 g weight for a thousand times. Furthermore, the modified cotton showed the interesting temperature "switch" phenomenon, which endowed the change of the wettability with the change of the temperature. The modified cotton material exhibited enhanced oil-water separation performance with good mechanical stability, pH and abrasion resistance, as well as the "switch" property.

18.
Pak J Pharm Sci ; 31(3): 821-825, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29716861

RESUMEN

A dimeric naphthoquinone namely dihydrodyspyrole R (1) was purified once more from Diospyros lotus. Dihydrodyspyrole R and chloroform fractions were evaluated for their effects on the reversion of multidrug resistance (MDR). The compounds (1) and extract exhibited promising MDR reversing effect in a dose-dependent manner against mouse T-lymphoma cell line. Molecular docking of compound 1 revealed the correlation between in-silico with in-vitro results. The molecular docking results showed that compound 1 is bind closely where co-crystal ligand of P-gp is present. But usually, computational investigation predicts that, if a compound gives lesser score then compound will exhibit good activity. Hence, the docking scores of compound 1 are the near to the Rhodamine. It is conclude that there are certain important structural features of compound 1which are responsible for the inhibiting potency of P-gp from mice. The computational Petra/Osiris/Molinspiration (POM) analysis confirms the possibility of use of compound 1 without side effect or less toxicity risks.


Asunto(s)
Diospyros , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Lotus , Naftoquinonas/química , Extractos Vegetales/química , Animales , Línea Celular Tumoral , Cristalografía por Rayos X/métodos , Resistencia a Múltiples Medicamentos/fisiología , Resistencia a Antineoplásicos/fisiología , Ratones , Simulación del Acoplamiento Molecular/métodos , Naftoquinonas/aislamiento & purificación , Naftoquinonas/farmacología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Raíces de Plantas
19.
Pak J Pharm Sci ; 31(1): 181-186, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29348101

RESUMEN

The aim of the present study was to examine the effect of gamma radiation on levofloxacin. Powder form of levofloxacin was subjected to different radiation doses (25, 50, 75, 100 and 125kGy) of Cobalt-60 source in a Gammacell-220 at a rate of 8.5 Gray/hr. The effect of radiation has been investigated with the aid of different spectroscopic techniques (UV-Vis, FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and by antibacterial activities. UV data did not reveal significant changes in the structure of levofloxacin which is supported by scanning electron microscopy. However, X-rays diffraction shows a change in crystallinity of levofloxacin to an amorphous structure and this has been reflected on the morphology of this compound as indicated by SEM images. The antibacterial activities, on the other hand, reveal resistance of irradiated levofloxacin against bacteria, where some bacteria were highly affected by the irradiated drug. Similarly, FT-IR data show some changes in the functional groups principal absorption bands, in the IR spectrum, at frequencies 3286, 2846, 1716 and 1620 cm-1 for the O-H stretching band of quinolone, C-H stretching band, and C=O stretching band of carboxylic and pyridine. In addition, new peaks appeared which were not seen in the non-irradiated spectrum. In conclusion, some changes occurred in levofloxacin drug with the passage of radiation but the drug was chemically stable.


Asunto(s)
Antibacterianos/efectos de la radiación , Rayos gamma , Levofloxacino/efectos de la radiación , Esterilización/métodos , Antibacterianos/química , Bacterias Gramnegativas/efectos de la radiación , Bacterias Grampositivas/efectos de la radiación , Levofloxacino/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Polvos , Estereoisomerismo , Propiedades de Superficie
20.
Hum Mutat ; 39(4): 461-470, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29282788

RESUMEN

Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis.


Asunto(s)
ADN Mitocondrial/genética , Trastornos Heredodegenerativos del Sistema Nervioso , Hepatopatías , Proteínas de la Membrana/genética , Enfermedades Mitocondriales , Proteínas Mitocondriales/genética , Enfermedades del Sistema Nervioso Periférico , Trastornos Heredodegenerativos del Sistema Nervioso/diagnóstico , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , Hígado/metabolismo , Hepatopatías/diagnóstico , Hepatopatías/genética , Hepatopatías/metabolismo , Mitocondrias/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mutación , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA