Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Acad Radiol ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39155157

RESUMEN

RATIONALE AND OBJECTIVES: This study investigates the dose burden of photon-counting detector (PCD) lung CT with ultra-high-resolution (UHR) and standard mode using organ-based tube current modulation (OBTCM). MATERIALS AND METHODS: An anthropomorphic Alderson-Rando phantom was scanned in UHR and standard mode with and without OBTCM on three dose levels (IQ 5, 20, 50). Effective radiation dose was determined by thermoluminescent dosimetry in 13 measurement sites and compared with the calculated effective dose derived from the dose-length product. Image quality was evaluated subjectively by six radiologists using an equidistant 7-point scale and objectively by means of modulation transfer function analysis. RESULTS: Measured effective radiation exposure was lower in UHR and OBTCM studies than in standard mode (IQ 5: 0.34-0.36, IQ 20: 1.57-1.70, IQ 50: 3.76-3.99 mSv). Compared with the calculated effective dose, the radiation exposure measured with thermoluminescence dosimetry was 131-170% higher. Noise in UHR mode was rated lower than in standard (all p ≤ 0.042) and OBTCM images (all p ≤ 0.028) for all dose levels, while image sharpness was deemed highest for UHR protocols (all p ≤ 0.042). The use of OBTCM had no significant effect on either dimension of subjective image quality (all p ≥ 0.999). Modulation transfer function analysis confirmed the highest spatial frequency in UHR datasets (all p ≤ 0.016). CONCLUSION: In PCD-CT of the lung, full field-of-view UHR imaging entails no dose disadvantage over standard mode despite superior image quality. OBTCM possesses moderate dose saving potential. Thermoluminescence dosimetry yielded considerably higher effective doses than those calculated from dose-length products.

2.
Z Med Phys ; 34(3): 397-407, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852003

RESUMEN

Cone-beam computed tomography (CBCT)-based online adaptation is increasingly being introduced into many clinics. Upon implementation of a new treatment technique, a prospective risk analysis is required and enhances workflow safety. We conducted a risk analysis using Failure Mode and Effects Analysis (FMEA) upon the introduction of an online adaptive treatment programme (Wegener et al., Z Med Phys. 2022). A prospective risk analysis, lacking in-depth clinical experience with a treatment modality or treatment machine, relies on imagination and estimates of the occurrence of different failure modes. Therefore, we systematically documented all irregularities during the first year of online adaptation, namely all cases in which quality assurance detected undesired states potentially leading to negative consequences. Additionally, the quality of automatic contouring was evaluated. Based on those quantitative data, the risk analysis was updated by an interprofessional team. Furthermore, a hypothetical radiation therapist-only workflow during adaptive sessions was included in the prospective analysis, as opposed to the involvement of an interprofessional team performing each adaptive treatment. A total of 126 irregularities were recorded during the first year. During that time period, many of the previously anticipated failure modes (almost) occurred, indicating that the initial prospective risk analysis captured relevant failure modes. However, some scenarios were not anticipated, emphasizing the limits of a prospective risk analysis. This underscores the need for regular updates to the risk analysis. The most critical failure modes are presented together with possible mitigation strategies. It was further noted that almost half of the reported irregularities applied to the non-adaptive treatments on this treatment machine, primarily due to a manual plan import step implemented in the institution's workflow.


Asunto(s)
Inteligencia Artificial , Tomografía Computarizada de Haz Cónico , Humanos , Estudios Prospectivos , Medición de Riesgo , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Análisis de Modo y Efecto de Fallas en la Atención de la Salud
3.
J Appl Clin Med Phys ; 25(7): e14311, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38386919

RESUMEN

MOTIVATION: Online adaptive radiotherapy with Ethos is based on the anatomy determined from daily cone beam computed tomography (CBCT) images. Dose optimization and computation are performed on the density map of a synthetic CT (sCT), a deformable registration of the initial planning CT (pCT) onto the current CBCT. Large density changes as present in the lung region are challenging the system. METHODS: Treatment plans for Ethos were created and delivered for 1, 2, and 3 cm diameter lung lesions in an anthropomorphic phantom, combining different insets in the pCT and during adaptive and non-adaptive treatment sessions. Primary and secondary dose calculations as well as back-projected dose from portal images were evaluated. RESULTS: Density changes due to changed insets were not considered in the sCTs. This resulted in errors in the dose; for example, -15.9% of the mean dose for a plan when changing from a 3 cm inset in the pCT to 1 cm at the time of treatment. Secondary dose calculation is based on the sCT and could therefore not reveal these dose errors. However, dose calculation on the CBCT, either as a recalculation in the treatment planning system or as pre-treatment quality assurance (QA) before the treatment, indicated the differences. EPID in-vivo QA also reported discrepancies between calculated and delivered dose distributions. CONCLUSIONS: An incorrect density distribution in the sCT has an impact on the dose calculation accuracy in the adaptive treatment workflow with the Ethos system. Additional quality checks of the sCT can detect such errors.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Estudios de Factibilidad , Neoplasias Pulmonares , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Garantía de la Calidad de Atención de Salud/normas , Radioterapia de Intensidad Modulada/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Órganos en Riesgo/efectos de la radiación , Algoritmos
4.
J Appl Clin Med Phys ; 25(2): e14172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37793069

RESUMEN

Cranial stereotactic irradiations require accurate reproduction of the planning CT patient position at the time of treatment, including removal of rotational offsets. A device prototype was evaluated for potential clinical use to correct rotational positional offsets in image-guided radiotherapy workflow. Analysis was carried out with a prototype device "RPS head" by gKteso GmbH, rotatable up to 4° in three dimensions by hand wheels. A software tool accounts for the nonrectangular rotation axes and also indicates translational motions to be performed with the standard couch to correct the initial offset and translational shifts introduced by the rotational motion. The accuracy of angular corrections and positioning of an Alderson RANDO head phantom using the prototype device was evaluated for nine treatment plans for cranial targets. Corrections were obtained from cone beam computed tomography (CBCT) imaging. The phantom position was adjusted and the final position was then verified by another CBCT. The long-term stability of the prototype device was evaluated. Attenuation by the device along its three main axes was assessed. A planning study was performed to evaluate if regions of high-density material can be avoided during plan generation. The device enabled the accurate correction of rotational offsets in a clinical setup with a mean residual angular difference of (0.0 ± 0.1)° and a maximum deviation of 0.2°. Translational offsets were less than 1 mm. The device was stable over a period of 20 min, not changing the head support plate position by more than (0.7 ± 0.6) mm. The device contains high-density material in the adjustment mechanism and slightly higher density in the support structures. These can be avoided during planning generation maintaining comparable plan quality. The head positioning device can be used to correct rotational offsets in a clinical setting.


Asunto(s)
Radiocirugia , Radioterapia Guiada por Imagen , Humanos , Posicionamiento del Paciente , Radioterapia Guiada por Imagen/métodos , Rotación , Fantasmas de Imagen , Programas Informáticos , Tomografía Computarizada de Haz Cónico/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radiocirugia/métodos
5.
J Appl Clin Med Phys ; 24(12): e14139, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37690124

RESUMEN

PURPOSE: Secondary dose calculation (SDC) with an independent algorithm is one option to perform plan-specific quality assurance (QA). While measurement-based QA can potentially detect errors in plan delivery, the dose values are typically only compared to calculations on homogeneous phantom geometries instead of patient CT data. We analyzed the sensitivity and specificity of an SDC software by purposely introducing different errors and determined thresholds for optimal decisions. METHODS: Thirty head and neck VMAT plans and 30 modifications of those plans, including errors related to density and beam modelling, were recalculated using RadCalc with a Monte Carlo algorithm. Decision thresholds were obtained by receiver operating characteristics (ROC) analysis. For comparison, measurement-based QA using the ArcCHECK phantom was carried out and evaluated in the same way. RESULTS: Despite optimized decision thresholds, none of the systems was able to reliably detect all errors. ArcCHECK analysis using a 2%/2 mm criterion with a threshold of 91.1% had an area under the curve (AUC) of 0.80. Evaluating differences in recalculated and planned DVH parameter of the target structures in RadCalc with a 2% threshold an AUC of 0.86 was achieved. Out-of-field deviations could be attributed to weaknesses in the beam model. CONCLUSIONS: Secondary dose calculation with RadCalc is an alternative to established measurement-based phantom QA. Different tools catch different errors; therefore, a combination of approaches should be preferred.


Asunto(s)
Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador , Garantía de la Calidad de Atención de Salud , Programas Informáticos , Sensibilidad y Especificidad , Dosificación Radioterapéutica
6.
Radiother Oncol ; 187: 109840, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37536377

RESUMEN

BACKGROUND: Objective and subjective assessment of image quality of brain metastases on dual-energy computed tomography (DECT) virtual monoenergetic imaging (VMI) and its impact on target volume delineation. MATERIALS AND METHODS: 26 patients with 37 brain metastases receiving Magnetic Resonance Imaging (MRI) and DECT for stereotactic radiotherapy planning were included in this retrospective analysis. Lesion contrast (LC), contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were assessed for reconstructed VMI at 63 keV and artificial 120 kV Computed Tomography (CT). Image contrast and demarcation of metastases between 120 kV CT, VMI and MRI were subjectively assessed. Brain metastases were delineated by four radiation oncologists on VMI with a fixed or free brain window and contours were compared to solely MRI-based delineation using the Dice similarity coefficient. RESULTS: LC, CNR and SNR were significantly higher in VMI than in 120 kV CT (p < 0.0001). Image contrast and lesion demarcation were significantly better on VMI compared to 120 kV CT (p < 0.0001). Mean gross tumor volume (GTV)/planning target volume (PTV) Dice similarity coefficients were 0.87/0.9 for metastases without imaging uncertainties (no artifacts, calcification or impaired visibility with MRI) but worse for metastases with imaging uncertainties (0.71/0.74). Target volumes delineated on VMI were around 5-10% smaller compared to MRI. CONCLUSION: Image quality of VMI is objectively and subjectively superior to conventional CT. VMI provides significant advantages in stereotactic radiotherapy planning with improved visibility of brain metastases and geometrically distortion-free representation of brain metastases. Beside a plausibility check of MRI-based target volume delineation, VMI might improve reliability and accuracy in target volume definition particularly in cases with imaging uncertainties with MRI.


Asunto(s)
Neoplasias Encefálicas , Imagen Radiográfica por Emisión de Doble Fotón , Humanos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Imagen Radiográfica por Emisión de Doble Fotón/métodos , Tomografía Computarizada por Rayos X/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
7.
Phys Med ; 113: 102662, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37572393

RESUMEN

PURPOSE: Ethos allows online adaption of radiotherapy treatment plans. Dose is calculated on synthetic computed tomographies (sCT), CT-like images generated by deforming planning CTs (pCT) onto daily cone beam CTs (CBCT) acquired during treatment sessions. Errors in sCT density distribution may lead to dose calculation errors. sCT correctness was investigated for bolus-covered surfaces. METHODS: pCTs were recorded of a slab phantom covered with bolus of different thicknesses and with air gaps introduced by spacer rings of variable diameters and heights. Treatment plans were irradiated following the adaptive workflow with different bolus configurations present in the pCT and CBCT. sCT densities were compared to those of the pCT for the same air gap size. Additionally, the neck region of an anthropomorphic phantom was imaged using a plane standard bolus versus an individual bolus adapted to the phantom's outer contour. RESULTS: Varying bolus thickness by 5 mm between pCT and CBCT was reproduced in the sCT within 2 mm accuracy. Different air gaps in pCT and CBCT resulted in highly variable bolus thickness in the sCT with a typical error of 5 mm or more. In extreme cases, air gaps were filled with bolus material density in the sCT or the phantom was unrealistically deformed near changed bolus geometries. Changes in bolus thickness and deformation also occurred in the anthropomorphic phantom. CONCLUSION: sCTs must be critically examined and included in plan-specific quality assurance. The use of tight-fitting air gap-free bolus should be preferred to increase the similarity between sCT and CBCT.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Radioterapia de Intensidad Modulada , Tomografía Computarizada de Haz Cónico/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X , Radioterapia de Intensidad Modulada/métodos , Procesamiento de Imagen Asistido por Computador/métodos
8.
Diagnostics (Basel) ; 13(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37174949

RESUMEN

OBJECTIVES: Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. MATERIALS AND METHODS: A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m2) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m2 (n = 110), pre-obese: 25-29.9 kg/m2 (n = 73), and obese: >30 kg/m2 (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. RESULTS: While arterial contrast phases in DECT were associated with a higher CTDIvol than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R2 = 0.738) and SECT (R2 = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1%) compared with non-obese (0%) and pre-obese patients (4.1%). CONCLUSION: DECT facilitates a 30.8% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients.

9.
J Appl Clin Med Phys ; 24(8): e14001, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086428

RESUMEN

PURPOSE: Developed as a plan-specific pre-treatment QA tool, Varian portal dosimetry promises a fast, high-resolution, and integrated QA solution. In this study, the agreement between predicted fluence and measured cumulative portal dose was determined for the first 140 patient plans at our Halcyon linear accelerator. Furthermore, the capability of portal dosimetry to detect incorrect plan delivery was compared to that of a common QA phantom. Finally, tolerance criteria for verification of VMAT plan delivery with Varian portal dosimetry were derived. METHODS: All patient plans and the corresponding verification plans were generated within the Eclipse treatment planning system. Four representative plans of different treatment sites (prostate, prostate with lymphatic drainage, rectum, and head & neck) were intentionally altered to model incorrect plan delivery. Investigated errors included both systematic and random errors. Gamma analysis was conducted on both portal dose (criteria γ2%/2 mm , γ2%/1 mm , and γ1%/1 mm ) and ArcCHECK measurements (criteria γ3%/3 mm , γ3%/2 mm , and γ2%/2 mm ) with a 10% low-dose threshold. Performance assessment of various acceptance criteria for plan-specific treatment QA utilized receiver operating characteristic (ROC) analysis. RESULTS: Predicted and acquired portal dosimetry fluences demonstrated a high agreement evident by average gamma passing rates for the clinical patient plans of 99.90%, 96.64%, and 91.87% for γ2%/2 mm , γ2%/1 mm , and γ1%/1 mm , respectively. The ROC analysis demonstrated a very high capability of detecting erroneous plan delivery for portal dosimetry (area under curve (AUC) > 0.98) and in this regard outperforms QA with the ArcCHECK phantom (AUC ≈ 0.82). With the suggested optimum decision thresholds excellent sensitivity and specificity is simultaneously possible. CONCLUSIONS: Owing to the high achievable spatial resolution, portal dosimetry at the Halcyon can reliably be deployed as plan-specific pre-treatment QA tool to screen for errors. It is recommended to support the fluence integrated portal dosimetry QA by independent phantom-based measurements of a random sample survey of treatment plans.


Asunto(s)
Radioterapia de Intensidad Modulada , Masculino , Humanos , Planificación de la Radioterapia Asistida por Computador , Radiometría , Dosificación Radioterapéutica , Sensibilidad y Especificidad , Garantía de la Calidad de Atención de Salud
10.
Z Med Phys ; 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36504142

RESUMEN

PURPOSE: The recently introduced Varian Ethos system allows adjusting radiotherapy treatment plans to anatomical changes on a daily basis. The system uses artificial intelligence to speed up the process of creating adapted plans, comes with its own software solutions and requires a substantially different workflow. A detailed analysis of possible risks of the associated workflow is presented. METHODS: A prospective risk analysis of the adaptive workflow with the Ethos system was performed using Failure Modes and Effects Analysis (FMEA). An interprofessional team collected possible adverse events and evaluated their severity as well as their chance of occurrence and detectability. Measures to reduce the risks were discussed. RESULTS: A total of 122 events were identified, and scored. Within the 20 events with the highest-ranked risks, the following were identified: Challenges due to the stand-alone software solution with very limited connectivity to the existing record and verify software and digital patient file, unfamiliarity with the new software and its limitations and the adaption process relying on results obtained by artificial intelligence. The risk analysis led to the implementation of additional quality assurance measures in the workflow. CONCLUSIONS: The thorough analysis of the risks associated with the new treatment technique was the basis for designing details of the workflow. The analysis also revealed challenges to be addressed by both, the vendor and customers. On the vendor side, this includes improving communication between their different software solutions. On the customer side, this especially includes establishing validation strategies to monitor the results of the black box adaption process making use of artificial intelligence.

11.
Cancers (Basel) ; 14(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35954430

RESUMEN

BACKGROUND: The study aimed to access the long-term outcome of salvage nodal radiotherapy (SNRT) in oligorecurrent prostate cancer. METHODS: A total of 95 consecutive patients received SNRT for pelvic and/or extrapelvic nodal recurrence after prostate-specific membrane antigen (PSMA) or choline PET from 2010 to 2021. SNRT was applied as external beam radiotherapy with simultaneous integrated boost up to a median total dose of 62.9 Gy (EQD21.5Gy) to the recurrent lymph node metastases. The outcome was analyzed by cumulative incidence functions with death as the competing risk. Fine-Gray regression analyses were performed to estimate the relative hazards of the outcome parameters. Genitourinary (GU)/gastrointestinal (GI) toxicity evaluation utilized Common Toxicity Criteria for Adverse Events (v5.0). The results are as follows: the median follow-up was 47.1 months. The five-year biochemical progression rate (95% CI) was 50.1% (35.7-62.9%). Concomitant androgen deprivation therapy (ADT) was adminstered in 60.0% of the patients. The five-year biochemical progression rate was 75.0% (42.0-90.9%) without ADT versus 35.3% (19.6-51.4%) with ADT (p = 0.003). The cumulative five-year late grade 3 GU toxicity rate was 2.1%. No late grade 3 GI toxicity occured. CONCLUSIONS: Metastasis-directed therapy through SNRT for PET-staged oligorecurrent prostate cancer demonstrated a favorable long-term oncologic outcome. Omittance of ADT led to an increased biochemical progression.

12.
Nat Nanotechnol ; 17(5): 477-484, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35449413

RESUMEN

When photons interact with matter, forces and torques occur due to the transfer of linear and angular momentum, respectively. The resulting accelerations are small for macroscopic objects but become substantial for microscopic objects with small masses and moments of inertia, rendering photon recoil very attractive to propel micro- and nano-objects. However, until now, using light to control object motion in two or three dimensions in all three or six degrees of freedom has remained an unsolved challenge. Here we demonstrate light-driven microdrones (size roughly 2 µm and mass roughly 2 pg) in an aqueous environment that can be manoeuvred in two dimensions in all three independent degrees of freedom (two translational and one rotational) using two overlapping unfocused light fields of 830 and 980 nm wavelength. To actuate the microdrones independent of their orientation, we use up to four individually addressable chiral plasmonic nanoantennas acting as nanomotors that resonantly scatter the circular polarization components of the driving light into well-defined directions. The microdrones are manoeuvred by only adjusting the optical power for each motor (the power of each circular polarization component of each wavelength). The actuation concept is therefore similar to that of macroscopic multirotor drones. As a result, we demonstrate manual steering of the microdrones along complex paths. Since all degrees of freedom can be addressed independently and directly, feedback control loops may be used to counteract Brownian motion. We posit that the microdrones can find applications in transport and release of cargos, nanomanipulation, and local probing and sensing of nano and mesoscale objects.


Asunto(s)
Fotones , Agua , Movimiento (Física)
13.
Phys Med ; 96: 204-212, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34863609

RESUMEN

PURPOSE: Parallels between the fields of non-coplanar IMRT and non-coplanar computed tomographic reconstruction are highlighted exemplified by the identification of qualified beam configurations for the irradiation of brain tumors. METHODS AND MATERIALS: Four types of beam configurations, i.e. a pure coplanar, a quasi-isotropic and two transitional arrangements, served to systematically examine the impact of parameters such as the sampling rate and the degree of accessibility on plan quality. The resulting set of treatment techniques was compared by means of a Pinnacle3 based retrospective planning study on 18 brain tumor cases. RESULTS AND DISCUSSION: A consistent ranking of IMRT beam constellations according to plan quality was established, which directly reflects the necessities of high-quality CT imaging. Once a sufficient dense beam sampling is secured (given by compliance to Nyquist's theorem), the quasi-isotropic (QIso) irradiation produced best treatment plans, followed by a coplanar irradiation complemented by a single orthogonal non-coplanar beam (CoPl+1). Beams evenly distributed in two orthogonal planes (2-Pl), although using larger portions of the 4π space, proved to be less favorable as the beam sequence becomes less dense. The most unfavorable technique is the pure coplanar technique (CoPl). Generally, techniques with large interbeam distance, i.e. the 2-Pl technique and, to a lesser extent, QIso, are particularly sensitive to a beam number reduction. CONCLUSIONS: Rules established for high quality non-coplanar tomographic imaging are also relevant for non-coplanar IMRT. In this regard, the degree of coverage of 4π space is less important than a sufficient dense sampling.


Asunto(s)
Neoplasias Encefálicas , Radioterapia de Intensidad Modulada , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X
14.
Radiat Oncol ; 16(1): 213, 2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742291

RESUMEN

BACKGROUND: To implement a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans. METHODS: For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom. RESULTS: The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3%/2 mm) with 100% points passing and ArcCheck QA (3%/2 mm) with 99.5%. Measurement of the cumulated treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans. CONCLUSIONS: For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a lower contribution of scattered dose from the collimator system.


Asunto(s)
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentación , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
15.
Radiat Oncol ; 16(1): 205, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702305

RESUMEN

BACKGROUND: Evaluation of delivered dose to the dominant intraprostatic lesion (DIL) for moderately hypofractionated radiotherapy of prostate cancer by cone beam computed tomography (CBCT)-based dose accumulation and target coverage analysis. METHODS: Twenty-three patients with localized prostate cancer treated with moderately hypofractionated prostate radiotherapy with simultaneous integrated boost (SIB) between December 2016 and February 2020 were retrospectively analyzed. Included patients were required to have an identifiable DIL on bi-parametric planning magnetic resonance imaging (MRI). After import into the RayStation treatment planning system and application of a step-wise density override, the fractional doses were computed on each CBCT and were consecutively mapped onto the planning CT via a deformation vector field derived from deformable image registration. Fractional doses were accumulated for all CBCTs and interpolated for missing CBCTs, resulting in the delivered dose for PTVDIL, PTVBoost, PTV, and the organs at risk. The location of the index lesions was recorded according to the sector map of the Prostate Imaging Reporting and Data System (PIRADS) Version 2.1. Target coverage of the index lesions was evaluated and stratified for location. RESULTS: In total, 338 CBCTs were available for analysis. Dose accumulation target coverage of PTVDIL, PTVBoost, and PTV was excellent and no cases of underdosage in DMean, D95%, D02%, and D98% could be detected. Delivered rectum DMean did not significantly differ from the planned dose. Bladder mean DMean was higher than planned with 19.4 ± 7.4 Gy versus 18.8 ± 7.5 Gy, p < 0.001. The penile bulb showed a decreased delivered mean DMean with 29.1 ± 14.0 Gy versus 29.8 ± 14.4 Gy, p < 0.001. Dorsal DILs, defined as DILs in the posterior medial peripheral zone of the prostate, showed a significantly lower delivered dose with a mean DMean difference of 2.2 Gy (95% CI 1.3-3.1 Gy, p < 0.001) compared to ventral lesions. CONCLUSIONS: CBCT-based dose accumulation showed an adequate delivered dose to the dominant intraprostatic lesion and organs at risk within planning limits. Cautious evaluation of the target coverage for index lesions adjacent to the rectum is warranted to avoid underdosage.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Neoplasias de la Próstata/patología , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Anciano , Anciano de 80 o más Años , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Órganos en Riesgo/efectos de la radiación , Pronóstico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Estudios Retrospectivos
16.
J Appl Clin Med Phys ; 22(9): 262-270, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34351055

RESUMEN

PURPOSE: To compare radiotherapy plans between an O-ring and a conventional C-arm linac for hypofractionated high-dose prostate radiotherapy in terms of plan quality, dose distribution, and quality assurance in a multi-vendor environment. METHODS: Twenty prostate cancer treatment plans were irradiated on the O-ring Varian Halcyon linac and were re-optimized for the C-arm Elekta Synergy Agility linac. Dose-volume histogram metrics for target coverage and organ at risk dose, quality assurance, and monitor units were retrospectively compared. Patient-specific quality assurance with ion chamber measurements, gamma index analysis, and portal dosimetry was performed using the Varian Portal Dosimetry system and the ArcCHECK® phantom (Sun Nuclear Corporation). Prostate-only radiotherapy was delivered with simultaneous integrated boost (SIB) volumetric modulated arc therapy (VMAT) in 20 fractions of 2.5/3.0 Gy each. RESULTS: For both linacs, target coverage was excellent and plan quality comparable. Homogeneity in PTVBoost was high for Synergy as well as Halcyon with a mean homogeneity index of 0.07 ± 0.01 and 0.05 ± 0.01, respectively. Mean dose for the organs at risk rectum and bladder differed not significantly between the linacs but were higher for the femoral heads and penile bulb for Halcyon. Quality assurance showed no significant differences in terms of ArcCHECK gamma pass rates. Median pass rate for 3%/2 mm was 99.3% (96.7 to 99.8%) for Synergy and 99.8% (95.6 to 100%) for Halcyon. Agreement between calculated and measured dose was high with a median deviation of -0.6% (-1.7 to 0.8%) for Synergy and 0.2% (-0.6 to 2.3%) for Halcyon. Monitor units were higher for the Halcyon by approximately 20% (p < 0.001). CONCLUSION: Hypofractionated high-dose prostate cancer SIB VMAT on the Halcyon system is feasible with comparable plan quality in reference to a standard C-arm Elekta Synergy linac.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
17.
Nano Lett ; 19(5): 3364-3369, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31013109

RESUMEN

The photon spin is an important resource for quantum information processing as is the electron spin in spintronics. However, for subwavelength confined optical excitations, polarization as a global property of a mode cannot be defined. Here, we show that any polarization state of a plane-wave photon can reversibly be mapped to a pseudospin embodied by the two fundamental modes of a subwavelength plasmonic two-wire transmission line. We design a device in which this pseudospin evolves in a well-defined fashion throughout the device reminiscent of the evolution of photon polarization in a birefringent medium and the behavior of electron spins in the channel of a spin field-effect transistor. The significance of this pseudospin is enriched by the fact that it is subject to spin-orbit locking. Combined with optically active materials to exert external control over the pseudospin precession, our findings could enable spin-optical transistors, that is, the routing and processing of quantum information with light on a subwavelength scale.

18.
Med Phys ; 45(12): 5622-5630, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30291724

RESUMEN

PURPOSE: The integral quality monitor (IQM) transmission detector is a wedge-shaped large area ionization chamber that reports a position-weighted dose area product for each control point of an IMRT or VMAT plan. In this study, the accuracy of the signal prediction is verified for the Synergy Agility MLC. Tolerance criteria for VMAT plan verification with the IQM were obtained from the observed sensitivity for the detection of incorrectly delivered plans. METHODS: The predicted IQM signal was compared to the measured signal recorded for a set of 30 VMAT plans for each beam quality of 6 and 10 MV. The system's capability to detect incorrectly delivered plans was tested by measuring altered plans containing small, random deviations. In addition, the observed deviations were related to measurements performed with a second QA phantom. RESULTS: The cumulative IQM signal per arc deviated from the respective calculation on average by -0.48% (6 MV) and +0.21% (10 MV) with a standard deviation of 1.08% in both cases, suggesting a 2% warning and 3% action threshold as plan acceptance criteria. This choice was confirmed by the optimum threshold of 2.5% obtained via receiver operating characteristic (ROC) analysis. Reproducibility of individual control points in multiply measured plans was low (on average 7% for 1SD) and thus, segment-by-segment comparison was impractical. A suitable criterion to resolve the angular distribution of the plan was identified by binning three to five control points as a running average. While the correlation between IQM signal deviations and gamma passing rates obtained with the ArcCHECK phantom was low for clinical plans, it was apparent for erroneous plans. Binning led to even higher sensitivity to errors. CONCLUSIONS: The IQM was able to detect induced errors at least as reliable as the standard phantom and showed the potential to be used in pretreatment plan verification to ensure the correct plan transfer and delivery. However, there is no direct correlation between the IQM signal deviation and DVH metrics, so the IQM should be primarily used to screen for errors. Finer diagnostics should then be carried out using a different phantom.


Asunto(s)
Errores Médicos , Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada , Fantasmas de Imagen
19.
Nanoscale ; 10(36): 17148-17155, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30183794

RESUMEN

Helium ion milling of chemically-synthesized micron-sized gold flakes is performed to fabricate ultra-narrow nanoslit cavities with a varying length and width down to 5 nm. Their plasmon resonances are characterized by one-photon photoluminescence spectroscopy. The combination of fabrication based on single-crystalline gold and resonant modes with low radiative losses leads to remarkably high quality factors of up to 24. Multiple Fabry-Pérot-type resonances in the visible/near infrared spectral range are observed due to the achieved narrow slit widths and the resulting short effective wavelengths of nanoslit plasmons. These features make nanoslit cavities attractive for a range of applications such as surface-enhanced spectroscopy, ultrafast nano-optics and strong light-matter coupling.

20.
Sci Rep ; 8(1): 1921, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382908

RESUMEN

The validity of Kirchhoff's laws in plasmonic nanocircuitry is investigated by studying a junction of plasmonic two-wire transmission lines. We find that Kirchhoff's laws are valid for sufficiently small values of a phenomenological parameter κ relating the geometrical parameters of the transmission line with the effective wavelength of the guided mode. Beyond such regime, for large values of the phenomenological parameter, increasing deviations occur and the equivalent impedance description (Kirchhoff's laws) can only provide rough, but nevertheless useful, guidelines for the design of more complex plasmonic circuitry. As an example we investigate a system composed of a two-wire transmission line and a nanoantenna as the load. By addition of a parallel stub designed according to Kirchhoff's laws we achieve maximum signal transfer to the nanoantenna.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA