RESUMEN
Chemical reactions are often characterized by their transition state, which defines the critical geometry the molecule must pass through to move from reactants to products. Roaming provides an alternative picture, where in a dissociation reaction, the bond breaking is frustrated and a loosely bound intermediate is formed. Following bond breaking, the two partners are seen to roam around each other at distances of several Ångstroms, forming a loosely bound, and structurally ill-defined, intermediate that can subsequently lead to reactive or unreactive collisions. Here, we present a direct and time-resolved experimental measurement of roaming. By measuring the photoelectron spectrum of UV-excited acetaldehyde with a femtosecond extreme ultraviolet pulse, we captured spectral signatures of all of the key reactive structures, including that of the roaming intermediate. This provided a direct experimental measurement of the roaming process and allowed us to identify the time scales by which the roaming intermediate is formed and removed and the electronic potential surfaces upon which roaming proceeds.
RESUMEN
C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by â¼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ â π and (C-I bond localized) σ∗ â (n/π) excitation in the respective parent isomers.
RESUMEN
Recent developments in X-ray free-electron lasers have enabled a novel site-selective probe of coupled nuclear and electronic dynamics in photoexcited molecules, time-resolved X-ray photoelectron spectroscopy (TRXPS). We present results from a joint experimental and theoretical TRXPS study of the well-characterized ultraviolet photodissociation of CS2, a prototypical system for understanding non-adiabatic dynamics. These results demonstrate that the sulfur 2p binding energy is sensitive to changes in the nuclear structure following photoexcitation, which ultimately leads to dissociation into CS and S photoproducts. We are able to assign the main X-ray spectroscopic features to the CS and S products via comparison to a first-principles determination of the TRXPS based on ab initio multiple-spawning simulations. Our results demonstrate the use of TRXPS as a local probe of complex ultrafast photodissociation dynamics involving multimodal vibrational coupling, nonradiative transitions between electronic states, and multiple final product channels.
RESUMEN
The structural dynamics of photoexcited gas-phase carbon disulfide (CS2) molecules are investigated using ultrafast electron diffraction. The dynamics were triggered by excitation of the optically bright 1B2(1Σu+) state by an ultraviolet femtosecond laser pulse centred at 200 nm. In accordance with previous studies, rapid vibrational motion facilitates a combination of internal conversion and intersystem crossing to lower-lying electronic states. Photodissociation via these electronic manifolds results in the production of CS fragments in the electronic ground state and dissociated singlet and triplet sulphur atoms. The structural dynamics are extracted from the experiment using a trajectory-fitting filtering approach, revealing the main characteristics of the singlet and triplet dissociation pathways. Finally, the effect of the time-resolution on the experimental signal is considered and an outlook to future experiments provided.