Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancer Res ; 78(18): 5363-5374, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30054334

RESUMEN

Heterozygous somatic mutations in spliceosome genes (U2AF1, SF3B1, ZRSR2, or SRSF2) occur in >50% of patients with myelodysplastic syndrome (MDS). These mutations occur early in disease development, suggesting that they contribute to MDS pathogenesis and may represent a unique genetic vulnerability for targeted therapy. Here, we show that RNA splicing perturbation by expression of the U2AF1(S34F) mutant causes accumulation of R loops, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA, and elicits an ATR response. ATR inhibitors (ATRi) induced DNA damage and cell death in U2AF1(S34F)-expressing cells, and these effects of ATRi were enhanced by splicing modulating compounds. Moreover, ATRi-induced DNA damage was suppressed by overexpression of RNaseH1, an enzyme that specifically removes the RNA in RNA:DNA hybrids, suggesting that the ATRi sensitivity of U2AF1(S34F)-expressing cells arises from R loops. Taken together, our results demonstrate that ATR may represent a novel therapeutic target in patients with MDS carrying the U2AF1(S34F) mutation and potentially other malignancies harboring spliceosome mutations.Significance: This study provides preclinical evidence that patients with MDS or other myeloid malignancies driven by spliceosome mutations may benefit from ATR inhibition to exploit the R loop-associated vulnerability induced by perturbations in splicing. Cancer Res; 78(18); 5363-74. ©2018 AACR.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Empalmosomas , Animales , Antígenos CD34/metabolismo , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Supervivencia Celular , Daño del ADN , Células HeLa , Humanos , Células K562 , Ratones , Empalme del ARN , Factores de Empalme de ARN/metabolismo , Ribonucleasa H/metabolismo
2.
PLoS One ; 12(7): e0180401, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28753604

RESUMEN

Treatment with tyrosine kinase inhibitors is the standard of care for Philadelphia chromosome positive leukemias. However the eradication of leukemia initiating cells remains a challenge. Circumstantial evidence suggests that the cytokine microenvironment may play a role in BCR-ABL mediated leukemogenesis and in imatinib resistance. Gene expression analyses of BCR-ABL positive ALL long-term cultured cells revealed strong reduction of SOCS mRNA expression after imatinib treatment, thereby demonstrating a strong inhibition of cytokine signaling. In this study we employed SOCS1-a strong inhibitor of cytokine signaling-as a tool to terminate external cytokine signals in BCR-ABL transformed cells in vitro and in vivo. In colony formation assays with primary bone marrow cells, expression of SOCS1 decreased colony numbers under pro-proliferative cytokines, while it conferred growth resistance to anti-proliferative cytokines. Importantly, co-expression of SOCS1 with BCR-ABL led to the development of a MPD phenotype with a prolonged disease latency compared to BCR-ABL alone in a murine bone marrow transplantation model. Interestingly, SOCS1 co-expression protected 20% of mice from MPD development. In summary, we conclude that under pro-proliferative cytokine stimulation at the onset of myeloproliferative diseases SOCS1 acts as a tumor suppressor, while under anti-proliferative conditions it exerts oncogenic function. Therefore SOCS1 can promote opposing functions depending on the cytokine environment.


Asunto(s)
Citocinas/metabolismo , Proteínas de Fusión bcr-abl/metabolismo , Trastornos Mieloproliferativos/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Animales , Médula Ósea/metabolismo , Trasplante de Médula Ósea , Línea Celular , Femenino , Proteínas de Fusión bcr-abl/genética , Interleucina-3/metabolismo , Ratones , Trastornos Mieloproliferativos/genética , Fosforilación , Factor de Transcripción STAT5/metabolismo , Bazo/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas/genética
3.
Blood ; 127(16): 1967-75, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26932803

RESUMEN

Cytoskeletal remodeling of hematopoietic stem and progenitor cells (HSPCs) is essential for homing to the bone marrow (BM). The Ras-related C3 botulinum toxin substrate (Rac)/cell division control protein 42 homolog (CDC42) effector p21-activated kinase (Pak2) has been implicated in HSPC homing and engraftment. However, the molecular pathways mediating Pak2 functions in HSPCs are unknown. Here, we demonstrate that both Pak2 kinase activity and its interaction with the PAK-interacting exchange factor-ß (ß-Pix) are required to reconstitute defective ITALIC! Pak2 (ITALIC! Δ/Δ)HSPC homing to the BM. Pak2 serine/threonine kinase activity is required for stromal-derived factor-1 (SDF1α) chemokine-induced HSPC directional migration, whereas Pak2 interaction with ß-Pix is required to regulate the velocity of HSPC migration and precise F-actin assembly. Lack of SDF1α-induced filopodia and associated abnormal cell protrusions seen in ITALIC! Pak2 (ITALIC! Δ/Δ)HSPCs were rescued by wild-type (WT) Pak2 but not by a Pak2-kinase dead mutant (KD). Expression of a ß-Pix interaction-defective mutant of Pak2 rescued filopodia formation but led to abnormal F-actin bundles. Although CDC42 has previously been considered an upstream regulator of Pak2, we found a paradoxical decrease in baseline activation of CDC42 in ITALIC! Pak2 (ITALIC! Δ/Δ)HSPCs, which was rescued by expression of Pak2-WT but not by Pak2-KD; defective homing of ITALIC! Pak2-deleted HSPCs was rescued by constitutive active CDC42. These data demonstrate that both Pak2 kinase activity and its interaction with ß-Pix are essential for HSPC filopodia formation, cytoskeletal integrity, and homing via activation of CDC42. Taken together, we provide mechanistic insights into the role of Pak2 in HSPC migration and homing.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/fisiología , Animales , Comunicación Celular , Movimiento Celular/genética , Células Cultivadas , Citoesqueleto/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Nicho de Células Madre/genética , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
4.
Blood ; 126(26): 2811-20, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26385351

RESUMEN

Rare endothelial cells in the aorta-gonad-mesonephros (AGM) transition into hematopoietic stem cells (HSCs) during embryonic development. Lineage tracing experiments indicate that HSCs emerge from cadherin 5 (Cdh5; vascular endothelial-cadherin)(+) endothelial precursors, and isolated populations of Cdh5(+) cells from mouse embryos and embryonic stem cells can be differentiated into hematopoietic cells. Cdh5 has also been widely implicated as a marker of AGM-derived hemogenic endothelial cells. Because Cdh5(-/-) mice embryos die before the first HSCs emerge, it is unknown whether Cdh5 has a direct role in HSC emergence. Our previous genetic screen yielded malbec (mlb(bw306)), a zebrafish mutant for cdh5, with normal embryonic and definitive blood. Using time-lapse confocal imaging, parabiotic surgical pairing of zebrafish embryos, and blastula transplantation assays, we show that HSCs emerge, migrate, engraft, and differentiate in the absence of cdh5 expression. By tracing Cdh5(-/-)green fluorescent protein (GFP)(+/+) cells in chimeric mice, we demonstrated that Cdh5(-/-)GFP(+/+) HSCs emerging from embryonic day 10.5 and 11.5 (E10.5 and E11.5) AGM or derived from E13.5 fetal liver not only differentiate into hematopoietic colonies but also engraft and reconstitute multilineage adult blood. We also developed a conditional mouse Cdh5 knockout (Cdh5(flox/flox):Scl-Cre-ER(T)) and demonstrated that multipotent hematopoietic colonies form despite the absence of Cdh5. These data establish that Cdh5, a marker of hemogenic endothelium in the AGM, is dispensable for the transition of hemogenic endothelium to HSCs.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Diferenciación Celular/fisiología , Hemangioblastos/citología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Animales , Linaje de la Célula/fisiología , Electroporación , Embrión de Mamíferos , Embrión no Mamífero , Citometría de Flujo , Inmunohistoquímica , Mesonefro/embriología , Ratones , Ratones Noqueados , Microscopía Confocal , Pez Cebra
5.
Blood ; 121(13): 2474-82, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23335370

RESUMEN

The p21-activated kinases (Paks) are serine/threonine kinases that are major effectors of the Rho guanosine 5'\x{2011}triphosphatase, Rac, and Cdc42. Rac and Cdc42 are known regulators of hematopoietic stem and progenitor cell (HSPC) function, however, a direct role for Paks in HSPCs has yet to be elucidated. Lin(-)Sca1(+)c-kit(+) (LSK) cells from wild-type mice were transduced with retrovirus expressing Pak inhibitory domain (PID), a well-characterized inhibitor of Pak activation. Defects in marrow homing and in vitro cell migration, assembly of the actin cytoskeleton, proliferation, and survival were associated with engraftment failure of PID-LSK. The PID-LSK demonstrated decreased phosphorylation of extracellular signal-regulated kinase (ERK), whereas constitutive activation of ERK in these cells led to rescue of hematopoietic progenitor cell proliferation in vitro and partial rescue of Pak-deficient HSPC homing and engraftment in vivo. Using conditional knock-out mice, we demonstrate that among group A Paks, Pak2(-/-) HSPC show reduced homing to the bone marrow and altered cell shape similar to PID-LSK cells in vitro and are completely defective in HSPC engraftment. These data demonstrate that Pak proteins are key components of multiple engraftment-associated HSPC functions and play a direct role in activation of ERK in HSPCs, and that Pak2 is specifically essential for HSPC engraftment.


Asunto(s)
Movimiento Celular/genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/fisiología , Quinasas p21 Activadas/fisiología , Animales , Movimiento Celular/fisiología , Proliferación Celular , Supervivencia Celular/genética , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Quinasas p21 Activadas/genética , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rac/fisiología
6.
Blood ; 120(8): 1691-702, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22517899

RESUMEN

Activating mutations in the receptor tyrosine kinase FLT3 are frequently found in acute myelogenous leukemia patients and confer poor clinical prognosis. It is unclear how leukemic blasts escape cytokine control that regulates normal hematopoiesis. We have recently demonstrated that FLT3-internal tandem duplication (ITD), when localized to the biosynthetic compartment, aberrantly activates STAT5. Here, we show that one of the target genes induced by STAT5 is suppressor of cytokine signaling (SOCS)1-a surprising finding for a known tumor suppressor. Although SOCS1 expression in murine bone marrow severely impaired cytokine-induced colony growth, it failed to inhibit FLT3-ITD-supported colony growth, indicating resistance of FLT3-ITD to SOCS1. In addition, SOCS1 coexpression did not affect FLT3-ITD-mediated signaling or proliferation. Importantly, SOCS1 coexpression inhibited interferon-α and interferon-γ signaling and protected FLT3-ITD hematopoietic cells from interferon-mediated growth inhibitory effects. In a murine bone marrow transplantation model, the coexpression of SOCS1 and FLT3-ITD significantly shortened the latency of a myeloproliferative disease compared with FLT3-ITD alone (P < .01). Mechanistically, SOCS proteins shield FLT3-ITD from external cytokine control, thereby promoting leukemogenesis. The data demonstrate that SOCS1 acts as a conditional oncogene, providing novel molecular insights into cytokine resistance in oncogenic transformation. Restoring cytokine control may provide a new way of therapeutic intervention.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Interferones/inmunología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/inmunología , Proteínas Supresoras de la Señalización de Citocinas/genética , Tirosina Quinasa 3 Similar a fms/genética , Animales , Línea Celular Tumoral , Células Cultivadas , Duplicación de Gen , Humanos , Ratones , Ratones Endogámicos BALB C , Trastornos Mieloproliferativos/patología , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/inmunología , Proteína 1 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Tirosina Quinasa 3 Similar a fms/inmunología
7.
Mol Cell ; 36(2): 326-39, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19854140

RESUMEN

Inappropriate activation of oncogenic kinases at intracellular locations is frequently observed in human cancers, but its effects on global signaling are incompletely understood. Here, we show that the oncogenic mutant of Flt3 (Flt3-ITD), when localized at the endoplasmic reticulum (ER), aberrantly activates STAT5 and upregulates its targets, Pim-1/2, but fails to activate PI3K and MAPK signaling. Conversely, membrane targeting of Flt3-ITD strongly activates the MAPK and PI3K pathways, with diminished phosphorylation of STAT5. Global phosphoproteomics quantified 12,186 phosphorylation sites, confirmed compartment-dependent activation of these pathways and discovered many additional components of Flt3-ITD signaling. The differential activation of Akt and Pim kinases by ER-retained Flt3-ITD helped to identify their putative targets. Surprisingly, we find spatial regulation of tyrosine phosphorylation patterns of the receptor itself. Thus, intracellular activation of RTKs by oncogenic mutations in the biosynthetic route may exploit cellular architecture to initiate aberrant signaling cascades, thus evading negative regulation.


Asunto(s)
Oncogenes , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Brefeldino A/farmacología , Compartimento Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/enzimología , Activación Enzimática/efectos de los fármacos , Células HeLa , Humanos , Marcaje Isotópico , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Estructura Terciaria de Proteína , Proteómica , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Tirosina Quinasas Receptoras/química , Factor de Transcripción STAT5/metabolismo , Eliminación de Secuencia , Transducción de Señal/efectos de los fármacos , Tunicamicina/farmacología , Tirosina Quinasa 3 Similar a fms/química , Tirosina Quinasa 3 Similar a fms/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA