Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
ACS Med Chem Lett ; 14(12): 1631-1639, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116426

RESUMEN

Redirecting E3 ligases to neo-substrates, leading to their proteasomal disassembly, known as targeted protein degradation (TPD), has emerged as a promising alternative to traditional, occupancy-driven pharmacology. Although the field has expanded tremendously over the past years, the choice of E3 ligases remains limited, with an almost exclusive focus on CRBN and VHL. Here, we report the discovery of novel ligands to the PRY-SPRY domain of TRIM58, a RING ligase that is specifically expressed in erythroid precursor cells. A DSF screen, followed by validation using additional biophysical methods, led to the identification of TRIM58 ligand TRIM-473. A basic SAR around the chemotype was established by utilizing a competitive binding assay employing a short FP peptide probe derived from an endogenous TRIM58 substrate. The X-ray co-crystal structure of TRIM58 in complex with TRIM-473 gave insights into the binding mode and potential exit vectors for bifunctional degrader design.

2.
Nat Commun ; 13(1): 930, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177623

RESUMEN

The Hippo/YAP pathway controls cell proliferation through sensing physical and spatial organization of cells. How cell-cell contact is sensed by Hippo signaling is poorly understood. Here, we identified the cell adhesion molecule KIRREL1 as an upstream positive regulator of the mammalian Hippo pathway. KIRREL1 physically interacts with SAV1 and recruits SAV1 to cell-cell contact sites. Consistent with the hypothesis that KIRREL1-mediated cell adhesion suppresses YAP activity, knockout of KIRREL1 increases YAP activity in neighboring cells. Analyzing pan-cancer CRISPR proliferation screen data reveals KIRREL1 as the top plasma membrane protein showing strong correlation with known Hippo regulators, highlighting a critical role of KIRREL1 in regulating Hippo signaling and cell proliferation. During liver regeneration in mice, KIRREL1 is upregulated, and its genetic ablation enhances hepatic YAP activity, hepatocyte reprogramming and biliary epithelial cell proliferation. Our data suggest that KIRREL1 functions as a feedback regulator of the mammalian Hippo pathway through sensing cell-cell interaction and recruiting SAV1 to cell-cell contact sites.


Asunto(s)
Comunicación Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de la Membrana/metabolismo , Adulto , Anciano de 80 o más Años , Animales , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Retroalimentación Fisiológica , Femenino , Técnicas de Inactivación de Genes , Células HEK293 , Hepatocitos , Vía de Señalización Hippo , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Proteínas Señalizadoras YAP/metabolismo
4.
Nat Chem Biol ; 16(1): 50-59, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819276

RESUMEN

The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines. Inhibition of CPSF3 by JTE-607 alters expression of known downstream effectors in AML and Ewing's sarcoma lines, upregulates apoptosis and causes tumor-selective stasis in mouse xenografts. Mechanistically, it prevents the release of newly synthesized pre-mRNAs, resulting in read-through transcription and the formation of DNA-RNA hybrid R-loop structures. This study implicates pre-mRNA processing, and specifically CPSF3, as a druggable target providing an avenue to therapeutic intervention in cancer.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Leucemia Mieloide Aguda/metabolismo , Precursores del ARN/metabolismo , Sarcoma de Ewing/metabolismo , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Hidrolasas de Éster Carboxílico/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Células HEK293 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Fenotipo , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Piperazinas/farmacología , Unión Proteica , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Sarcoma de Ewing/tratamiento farmacológico
5.
Elife ; 82019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31741433

RESUMEN

EGFR-mutant NSCLCs frequently respond to EGFR tyrosine kinase inhibitors (TKIs). However, the responses are not durable, and the magnitude of tumor regression is variable, suggesting the existence of genetic modifiers of EGFR dependency. Here, we applied a genome-wide CRISPR-Cas9 screening to identify genetic determinants of EGFR TKI sensitivity and uncovered putative candidates. We show that knockout of RIC8A, essential for G-alpha protein activation, enhanced EGFR TKI-induced cell death. Mechanistically, we demonstrate that RIC8A is a positive regulator of YAP signaling, activation of which rescued the EGFR TKI sensitizing phenotype resulting from RIC8A knockout. We also show that knockout of ARIH2, or other components in the Cullin-5 E3 complex, conferred resistance to EGFR inhibition, in part by promoting nascent protein synthesis through METAP2. Together, these data uncover a spectrum of previously unidentified regulators of EGFR TKI sensitivity in EGFR-mutant human NSCLC, providing insights into the heterogeneity of EGFR TKI treatment responses.


Asunto(s)
Sistemas CRISPR-Cas , Carcinoma de Pulmón de Células no Pequeñas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Células A549 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular Tumoral , Proteínas Cullin , Receptores ErbB/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Metionil Aminopeptidasas/metabolismo , Ratones , Ratones Desnudos , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Transcriptoma , Ubiquitina-Proteína Ligasas/genética , Proteínas Señalizadoras YAP , Proteína de Unión al GTP rhoA/metabolismo
6.
Nat Commun ; 10(1): 4184, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519875

RESUMEN

Axin is a key scaffolding protein responsible for the formation of the ß-catenin destruction complex. Stability of Axin protein is regulated by the ubiquitin-proteasome system, and modulation of cellular concentration of Axin protein has a profound effect on Wnt/ß-catenin signaling. Although E3s promoting Axin ubiquitination have been identified, the deubiquitinase responsible for Axin deubiquitination and stabilization remains unknown. Here, we identify USP7 as a potent negative regulator of Wnt/ß-catenin signaling through CRISPR screens. Genetic ablation or pharmacological inhibition of USP7 robustly increases Wnt/ß-catenin signaling in multiple cellular systems. USP7 directly interacts with Axin through its TRAF domain, and promotes deubiquitination and stabilization of Axin. Inhibition of USP7 regulates osteoblast differentiation and adipocyte differentiation through increasing Wnt/ß-catenin signaling. Our study reveals a critical mechanism that prevents excessive degradation of Axin and identifies USP7 as a target for sensitizing cells to Wnt/ß-catenin signaling.


Asunto(s)
Proteína Axina/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , beta Catenina/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Proteína Axina/genética , Línea Celular , Línea Celular Tumoral , Citometría de Flujo , Células HCT116 , Humanos , Inmunoprecipitación , Ratones , Osteoblastos/metabolismo , Estabilidad Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Peptidasa Específica de Ubiquitina 7/genética , Ubiquitinación/genética , Ubiquitinación/fisiología , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , beta Catenina/genética
7.
Cell Stem Cell ; 25(1): 39-53.e10, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31080135

RESUMEN

Biliary epithelial cells (BECs) form bile ducts in the liver and are facultative liver stem cells that establish a ductular reaction (DR) to support liver regeneration following injury. Liver damage induces periportal LGR5+ putative liver stem cells that can form BEC-like organoids, suggesting that RSPO-LGR4/5-mediated WNT/ß-catenin activity is important for a DR. We addressed the roles of this and other signaling pathways in a DR by performing a focused CRISPR-based loss-of-function screen in BEC-like organoids, followed by in vivo validation and single-cell RNA sequencing. We found that BECs lack and do not require LGR4/5-mediated WNT/ß-catenin signaling during a DR, whereas YAP and mTORC1 signaling are required for this process. Upregulation of AXIN2 and LGR5 is required in hepatocytes to enable their regenerative capacity in response to injury. Together, these data highlight heterogeneity within the BEC pool, delineate signaling pathways involved in a DR, and clarify the identity and roles of injury-induced periportal LGR5+ cells.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Conductos Biliares/patología , Proteínas de Ciclo Celular/metabolismo , Células Epiteliales/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteína Axina/genética , Proteína Axina/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Animales de Enfermedad , Humanos , Regeneración Hepática , Masculino , Ratones , Ratones Endogámicos C57BL , Piridinas/toxicidad , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Trombospondinas/genética , Trombospondinas/metabolismo , Vía de Señalización Wnt , Proteínas Señalizadoras YAP
8.
Cell Rep ; 27(2): 616-630.e6, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970262

RESUMEN

Human pluripotent stem cells (hPSCs) generate a variety of disease-relevant cells that can be used to improve the translation of preclinical research. Despite the potential of hPSCs, their use for genetic screening has been limited by technical challenges. We developed a scalable and renewable Cas9 and sgRNA-hPSC library in which loss-of-function mutations can be induced at will. Our inducible mutant hPSC library can be used for multiple genome-wide CRISPR screens in a variety of hPSC-induced cell types. As proof of concept, we performed three screens for regulators of properties fundamental to hPSCs: their ability to self-renew and/or survive (fitness), their inability to survive as single-cell clones, and their capacity to differentiate. We identified the majority of known genes and pathways involved in these processes, as well as a plethora of genes with unidentified roles. This resource will increase the understanding of human development and genetics. This approach will be a powerful tool to identify disease-modifying genes and pathways.


Asunto(s)
Sistemas CRISPR-Cas/genética , Pruebas Genéticas/métodos , Genoma/genética , Células Madre Pluripotentes/metabolismo , Humanos
9.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30126924

RESUMEN

Autophagy maintains cellular homeostasis by targeting damaged organelles, pathogens, or misfolded protein aggregates for lysosomal degradation. The autophagic process is initiated by the formation of autophagosomes, which can selectively enclose cargo via autophagy cargo receptors. A machinery of well-characterized autophagy-related proteins orchestrates the biogenesis of autophagosomes; however, the origin of the required membranes is incompletely understood. Here, we have applied sensitized pooled CRISPR screens and identify the uncharacterized transmembrane protein TMEM41B as a novel regulator of autophagy. In the absence of TMEM41B, autophagosome biogenesis is stalled, LC3 accumulates at WIPI2- and DFCP1-positive isolation membranes, and lysosomal flux of autophagy cargo receptors and intracellular bacteria is impaired. In addition to defective autophagy, TMEM41B knockout cells display significantly enlarged lipid droplets and reduced mobilization and ß-oxidation of fatty acids. Immunostaining and interaction proteomics data suggest that TMEM41B localizes to the endoplasmic reticulum (ER). Taken together, we propose that TMEM41B is a novel ER-localized regulator of autophagosome biogenesis and lipid mobilization.


Asunto(s)
Autofagia/fisiología , Movilización Lipídica/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Autofagosomas/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , Homeostasis , Humanos , Lentivirus , Gotas Lipídicas/metabolismo , Movilización Lipídica/genética , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
10.
Cold Spring Harb Protoc ; 2018(7)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967271

RESUMEN

Generating DNA-bait strains for gateway-compatible yeast one-hybrid (Y1H) screens involves three steps. The first is to generate an Entry clone containing the DNA-bait of interest. Gateway cloning is used to clone larger baits, such as promoters, into pDONR-P4-P1R. (An alternative set of steps is also presented in this protocol that describes the creation of Entry clones by annealing primers and performing conventional ligation into pMW#5-a strategy best suited for smaller DNA-baits up to 100 bp.) The second is to transfer this DNA-bait from the Entry clone to the two Y1H reporter Destination vectors, pMW#2 (HIS3) and pMW#3 (LacZ). A two-step process is used because Entry clones generate a versatile resource that can be used for transfer of DNA-baits into a variety of vectors, for instance, upstream of the green fluorescent protein-encoding ORF to study spatiotemporal expression patterns. The final step is to integrate the HIS3 and LacZ reporter constructs into the genome of the Y1H yeast strain, YM4271. The entire process takes 24-32 d, plus sequence confirmation if necessary.


Asunto(s)
ADN de Hongos/genética , Técnicas del Sistema de Dos Híbridos , Levaduras/genética , Clonación Molecular , Cartilla de ADN , Reacción en Cadena de la Polimerasa/métodos
11.
Cold Spring Harb Protoc ; 2018(7)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967273

RESUMEN

In yeast hybrid assays, the process of identifying preys that interact with the bait of interest involves several steps. First, in this protocol, the bait yeast strain is transformed with a library of activation domain (AD)-prey clones and plated on selective media containing 3-aminotriazole (3AT). This selects transformants containing an AD-prey clone that induces HIS3 reporter expression. Second, these "HIS-positive" colonies are analyzed for LacZ induction (and, optionally, URA3 induction in yeast two-hybrid (Y2H) assays). Third, yeast PCR is used on these "double-positive" colonies to amplify the insert from the AD-prey plasmid. Fourth, some of this PCR product is used to perform a gap-repair retest to confirm the interaction in fresh bait-strain yeast, and the remainder is used for DNA sequencing to determine prey identity for those that successfully retest. Finally, interactions are carefully examined to filter out likely false-positive interactions. This protocol takes 20-43 d plus sequence confirmation to complete.


Asunto(s)
Levaduras/genética , ADN de Hongos/genética , Genes Reporteros , Técnicas del Sistema de Dos Híbridos
12.
Cold Spring Harb Protoc ; 2018(7)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967272

RESUMEN

Generating DNA-binding domain (DB)-bait strains for Gateway-compatible yeast two-hybrid (Y2H) screens involves three steps. The first is to generate an Entry clone containing a DNA fragment encoding the protein of interest (e.g., an open reading frame, ORF). The second is to transfer this DNA fragment from the Entry clone to the Y2H Destination vector, pDEST32. The final step is to transform this construct into the Y2H yeast strain, MaV103. This protocol takes 24-37 d plus sequence confirmation, if necessary, to complete.


Asunto(s)
ADN de Hongos/genética , Técnicas del Sistema de Dos Híbridos , Levaduras/genética , Cartilla de ADN , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa/métodos
13.
Cold Spring Harb Protoc ; 2018(7)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967274

RESUMEN

High-efficiency yeast transformation is used for integrations into YM4271 (yeast one-hybrid (Y1H) DNA-bait generation), for transforming libraries of activation domain (AD)-prey clones into Y1H and yeast two-hybrid (Y2H)-bait strains, and for gap repair. The protocol takes 2 d to complete.


Asunto(s)
Saccharomyces cerevisiae/genética , ADN de Hongos/genética , Técnicas del Sistema de Dos Híbridos
14.
Cold Spring Harb Protoc ; 2018(7)2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967278

RESUMEN

In the first section of this introduction, we provide background information for yeast two-hybrid (Y2H) assays that provide a genetic method for the identification and analysis of binary protein-protein interactions and that are complementary to biochemical methods such as immunoprecipitation. In the second section, we discuss yeast one-hybrid (Y1H) assays that provide a "gene-centered" (DNA-to-protein) genetic method to identify and study protein-DNA interactions between cis-regulatory elements and transcription factors (TFs). This method is complementary to "TF-centered" (protein-to-DNA) biochemical methods such as chromatin immunoprecipitation.


Asunto(s)
Técnicas del Sistema de Dos Híbridos , Levaduras/genética , ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo
15.
Cold Spring Harb Protoc ; 2018(1)2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29295904

RESUMEN

Generating stocks of Entry and Destination vectors for use in the Gateway recombinatorial cloning system requires transforming them into Escherichia coli strain DB3.1, where they can replicate because this strain is immune to the effects of the ccdB gene carried in the Gateway cassette. However, mutations in the ccdB gene can arise at low frequency, and these mutant plasmids will consequently allow growth of standard cloning strains of E. coli (e.g., DH5α). Therefore, after making new stocks of Gateway plasmids, their ability to grow in cloning strains of E. coli must be tested. This involves obtaining multiple stocks of vector, each arising from a single plasmid grown in a single DB3.1 bacterial colony, and transforming each stock into both DB3.1 and the preferred cloning strain of E. coli in a controlled fashion. Only vector stocks that effectively kill the standard cloning strain (i.e., no or few colonies are obtained after transformation) should be used in Gateway cloning reactions. The sequence can be performed in 3 d.


Asunto(s)
Replicación del ADN , Escherichia coli/genética , Vectores Genéticos/aislamiento & purificación , Biología Molecular/métodos , Plásmidos/aislamiento & purificación , Escherichia coli/crecimiento & desarrollo , Viabilidad Microbiana , Transformación Bacteriana
16.
Cold Spring Harb Protoc ; 2018(1)2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29295905

RESUMEN

This protocol describes using the Gateway recombinatorial cloning system to create an Entry clone carrying an open reading frame (ORF) and then to transfer the ORF into a Destination vector. In this example, BP recombination is used to clone an ORF from a cDNA source into the Donor vector pDONR 221. The ORF from the resulting Entry clone is then transferred into the Destination vector pDEST-15; the product (the Destination clone) will express the ORF as an amino-terminal GST-fusion. The technique can be used as a guide for cloning any other DNA fragment of interest-a promoter sequence or 3' untranslated region (UTR), for example-with substitutions of different genetic material such as genomic DNA, att sites, and vectors as required. The series of constructions and transformations requires 9-15 d, not including time that may be required for sequence confirmation, if desired/necessary.


Asunto(s)
Clonación Molecular/métodos , ADN Complementario/genética , Vectores Genéticos , Sistemas de Lectura Abierta , Recombinación Genética , Expresión Génica , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética
17.
Cold Spring Harb Protoc ; 2018(1)2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29295906

RESUMEN

This protocol describes using the Gateway recombinatorial cloning system to simultaneously transfer a promoter and an open reading frame (ORF) from two different Entry clones into the same Destination vector using LR enzymes. A multisite cloning reaction transfers the inserts from multiple Entry clones into a single Destination vector. This type of recombination is much less efficient than transferring a single DNA fragment; however, the variety of Destination clones that can be generated in this manner is vast. In this example protocol, we describe using pDEST-MB14 to make a Destination clone that features a promoter fragment fused upstream to an ORF that is cloned in-frame with a carboxy-terminal green fluorescent protein (GFP) moiety encoded by the plasmid backbone. This method can be used as a guide for other multisite cloning reactions.


Asunto(s)
Clonación Molecular/métodos , Vectores Genéticos , Sistemas de Lectura Abierta , Plásmidos , Regiones Promotoras Genéticas , Recombinación Genética
18.
Cold Spring Harb Protoc ; 2018(1)2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29295908

RESUMEN

The Gateway recombinatorial cloning system was developed for cloning multiple DNA fragments in parallel (e.g., in 96-well formats) in a standardized manner using the same enzymes. Gateway cloning is based on the highly specific integration and excision reactions of bacteriophage λ into and out of the Escherichia coli genome. Because the sites of recombination ("att" sites) are much longer (25-242 bp) than restriction sites, they are extremely unlikely to occur by chance in DNA fragments. Therefore, the same recombination enzyme can be used to robustly clone many different fragments of variable size in parallel reactions.


Asunto(s)
Sitios de Ligazón Microbiológica , Clonación Molecular/métodos , Recombinación Genética , Bacteriófago lambda/genética , Escherichia coli/genética
19.
Proc Natl Acad Sci U S A ; 115(2): E180-E189, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29269392

RESUMEN

PARKIN, an E3 ligase mutated in familial Parkinson's disease, promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood. Using cells designed to discover physiological regulators of PARKIN abundance, we performed a pooled genome-wide CRISPR/Cas9 knockout screen. Testing identified genes individually resulted in a list of 53 positive and negative regulators. A transcriptional repressor network including THAP11 was identified and negatively regulates endogenous PARKIN abundance. RNAseq analysis revealed the PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR knockout in multiple cell types enhanced pUb accumulation. Thus, our work demonstrates the critical role of PARKIN abundance, identifies regulating genes, and reveals a link between transcriptional repression and mitophagy, which is also apparent in human induced pluripotent stem cell-derived neurons, a disease-relevant cell type.


Asunto(s)
Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Genoma Humano/genética , Mitofagia/genética , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas/genética , Línea Celular Tumoral , Células Cultivadas , Células HCT116 , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Recién Nacido , Neuronas/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
20.
PLoS One ; 12(8): e0183679, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28837623

RESUMEN

Macrophages are key cell types of the innate immune system regulating host defense, inflammation, tissue homeostasis and cancer. Within this functional spectrum diverse and often opposing phenotypes are displayed which are dictated by environmental clues and depend on highly plastic transcriptional programs. Among these the 'classical' (M1) and 'alternative' (M2) macrophage polarization phenotypes are the best characterized. Understanding macrophage polarization in humans may reveal novel therapeutic intervention possibilities for chronic inflammation, wound healing and cancer. Systematic loss of function screening in human primary macrophages is limited due to lack of robust gene delivery methods and limited sample availability. To overcome these hurdles we developed cell-autonomous assays using the THP-1 cell line allowing genetic screens for human macrophage phenotypes. We screened 648 chromatin and signaling regulators with a pooled shRNA library for M1 and M2 polarization modulators. Validation experiments confirmed the primary screening results and identified OGT (O-linked N-acetylglucosamine (GlcNAc) transferase) as a novel mediator of M2 polarization in human macrophages. Our approach offers a possible avenue to utilize comprehensive genetic tools to identify novel candidate genes regulating macrophage polarization in humans.


Asunto(s)
Polaridad Celular/genética , Macrófagos/citología , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Humanos , Modelos Biológicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA