Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7931, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256363

RESUMEN

Polycomb repressive complex 1 (PRC1) modifies chromatin through catalysis of histone H2A lysine 119 monoubiquitination (H2AK119ub1). RING1 and RNF2 interchangeably serve as the catalytic subunit within PRC1. Pathogenic missense variants in PRC1 core components reveal functions of these proteins that are obscured in knockout models. While Ring1a knockout models remain healthy, the microcephaly and neuropsychiatric phenotypes associated with a pathogenic RING1 missense variant implicate unappreciated functions. Using an in vitro model of neurodevelopment, we observe that RING1 contributes to the broad placement of H2AK119ub1, and that its targets overlap with those of RNF2. PRC1 complexes harboring hypomorphic RING1 bind target loci but do not catalyze H2AK119ub1, reducing H2AK119ub1 by preventing catalytically active complexes from accessing the locus. This results in delayed DNA damage repair and cell cycle progression in neural progenitor cells (NPCs). Conversely, reduced H2AK119ub1 due to hypomorphic RING1 does not generate differential expression that impacts NPC differentiation. In contrast, hypomorphic RNF2 generates a greater reduction in H2AK119ub1 that results in both delayed DNA repair and widespread transcriptional changes. These findings suggest that the DNA damage response is more sensitive to H2AK119ub1 dosage change than is regulation of gene expression.


Asunto(s)
Daño del ADN , Reparación del ADN , Histonas , Mutación Missense , Células-Madre Neurales , Neurogénesis , Complejo Represivo Polycomb 1 , Ubiquitinación , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/genética , Histonas/metabolismo , Histonas/genética , Neurogénesis/genética , Animales , Humanos , Células-Madre Neurales/metabolismo , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Cromatina/metabolismo , Microcefalia/genética , Microcefalia/metabolismo
2.
Reprod Fertil Dev ; 30(8): 1049-1054, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29381876

RESUMEN

Research in reproductive science is essential to promote new developments in reproductive health and medicine, agriculture and conservation. The Society for Reproductive Biology (SRB) 2017 conference held in Perth (WA, Australia) provided a valuable update on current research programs in Australia and New Zealand. This conference review delivers a dedicated summary of significant questions, emerging concepts and innovative technologies presented in the symposia. This research demonstrates significant advances in the identification of precursors for a healthy pregnancy, birth and child, and discusses how these factors can influence disease risk. A key theme included preconception parental health and its effect on gametogenesis, embryo and fetal development and placental function. In addition, the perturbation of key developmental checkpoints was shown to contribute to a variety of pathological states that have the capacity to affect health and fertility. Importantly, the symposia discussed in this review emphasised the role of reproductive biology as a conduit for understanding the transmission of non-communicable diseases, such as metabolic disorders and cancers. The research presented at SRB 2017 has revealed key findings that have the prospect to change not only the fertility of the present generation, but also the health and reproductive capacity of future generations.


Asunto(s)
Reproducción , Investigación , Animales , Australia , Femenino , Fertilidad , Humanos , Nueva Zelanda , Parto , Embarazo
3.
Nucleic Acids Res ; 27(16): 3334-41, 1999 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-10454641

RESUMEN

There has been great interest recently in therapeutic use of nucleic acids including genes, ribozymes and antisense oligonucleotides. Despite recent improvements in delivering antisense oligonucleotides to cells in culture, nucleic acid-based therapy is still often limited by the poor penetration of the nucleic acid into the cytoplasm and nucleus of cells. In this report we describe nucleic acid delivery to cells using a series of novel cationic amphiphiles containing cholic acid moieties linked via alkylamino side chains. We term these agents 'molecular umbrellas' since the cationic alkylamino chains provide a 'handle' for binding of nucleic acids, while the cholic acid moieties are likely to interact with the lipid bilayer allowing the highly charged nucleic acid backbone to traverse across the cell membrane. Optimal gene and oligonucleotide delivery to cells was afforded by a derivative (amphiphile 5) containing four cholic acid moieties. With this amphiphile used as a constituent in cationic liposomes, a 4-5 log increase in reporter gene delivery was measured. This amphiphile used alone provided a 250-fold enhancement of oligo-nucleotide association with cells as observed by flow cytometry. A substantial fraction of cells exposed to complexes of amphiphile 5 and fluorescent oligo-nucleotide showed nuclear accumulation of the fluorophore. Enhanced pharmacological effectiveness of antisense oligonucleotides complexed with amphiphile 5 was observed using an antisense splicing correction assay that activates a Luciferase reporter. Intracellular delivery, nuclear localization and pharmacological effectiveness of oligonucleotides using amphiphile 5 were similar to those afforded by commercial cytofectins. However, in contrast to most commercial cytofectins, the umbrella amphiphile showed substantial delivery activity even in the presence of high concentrations of serum.


Asunto(s)
Oligonucleótidos Antisentido/administración & dosificación , Células 3T3 , Animales , Cationes , Portadores de Fármacos , Expresión Génica , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA