Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Neuron ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38692278

RESUMEN

Molecular layer interneurons (MLIs) account for approximately 80% of the inhibitory interneurons in the cerebellar cortex and are vital to cerebellar processing. MLIs are thought to primarily inhibit Purkinje cells (PCs) and suppress the plasticity of synapses onto PCs. MLIs also inhibit, and are electrically coupled to, other MLIs, but the functional significance of these connections is not known. Here, we find that two recently recognized MLI subtypes, MLI1 and MLI2, have a highly specialized connectivity that allows them to serve distinct functional roles. MLI1s primarily inhibit PCs, are electrically coupled to each other, fire synchronously with other MLI1s on the millisecond timescale in vivo, and synchronously pause PC firing. MLI2s are not electrically coupled, primarily inhibit MLI1s and disinhibit PCs, and are well suited to gating cerebellar-dependent behavior and learning. The synchronous firing of electrically coupled MLI1s and disinhibition provided by MLI2s require a major re-evaluation of cerebellar processing.

2.
Elife ; 132024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241596

RESUMEN

Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons allow signals from the cerebellar cortex to influence the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many PC inputs are thought to converge onto each CbN neuron to suppress its firing. It has been proposed that PCs convey information using a rate code, a synchrony and timing code, or both. The influence of PCs on CbN neuron firing was primarily examined for the combined effects of many PC inputs with comparable strengths, and the influence of individual PC inputs has not been extensively studied. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modeling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, individual PC-CbN synapses are suited to concurrently convey rate codes and generate precisely timed responses in CbN neurons. Either synchronous firing or synchronous pauses of PCs promote CbN neuron firing on rapid time scales for nonuniform inputs, but less effectively than for uniform inputs. This is a secondary consequence of variable input sizes elevating the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. These findings may generalize to other brain regions with highly variable inhibitory synapse sizes.


Asunto(s)
Cerebelo , Células de Purkinje , Cerebelo/fisiología , Células de Purkinje/fisiología , Neuronas/fisiología , Corteza Cerebelosa , Núcleos Cerebelosos/fisiología , Potenciales de Acción/fisiología
3.
Nat Neurosci ; 26(11): 1929-1941, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37919612

RESUMEN

In addition to its motor functions, the cerebellum is involved in emotional regulation, anxiety and affect. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that contribute to such functions (including the amygdala, basal forebrain and septum), but that the classic cerebellar outputs, the deep cerebellar nuclei, do not directly project there. We show that PCs directly inhibit parabrachial nuclei (PBN) neurons that project to numerous forebrain regions. Suppressing the PC-PBN pathway influences many regions in the forebrain and is aversive. Molecular profiling shows that PCs directly inhibit numerous types of PBN neurons that control diverse behaviors that are not involved in motor control. Therefore, the PC-PBN pathway allows the cerebellum to directly regulate activity in the forebrain, and may be an important substrate for cerebellar disorders arising from damage to the posterior vermis.


Asunto(s)
Núcleos Parabraquiales , Células de Purkinje , Células de Purkinje/fisiología , Cerebelo , Prosencéfalo/fisiología , Neuronas/metabolismo
4.
bioRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37745401

RESUMEN

The cerebellar cortex contributes to diverse behaviors by transforming mossy fiber inputs into predictions in the form of Purkinje cell (PC) outputs, and then refining those predictions1. Molecular layer interneurons (MLIs) account for approximately 80% of the inhibitory interneurons in the cerebellar cortex2, and are vital to cerebellar processing1,3. MLIs are thought to primarily inhibit PCs and suppress the plasticity of excitatory synapses onto PCs. MLIs also inhibit, and are electrically coupled to, other MLIs4-7, but the functional significance of these connections is not known1,3. Behavioral studies suggest that cerebellar-dependent learning is gated by disinhibition of PCs, but the source of such disinhibition has not been identified8. Here we find that two recently recognized MLI subtypes2, MLI1 and MLI2, have highly specialized connectivity that allows them to serve very different functional roles. MLI1s primarily inhibit PCs, are electrically coupled to each other, fire synchronously with other MLI1s on the millisecond time scale in vivo, and synchronously pause PC firing. MLI2s are not electrically coupled, they primarily inhibit MLI1s and disinhibit PCs, and are well suited to gating cerebellar-dependent learning8. These findings require a major reevaluation of processing within the cerebellum in which disinhibition, a powerful circuit motif present in the cerebral cortex and elsewhere9-17, greatly increases the computational power and flexibility of the cerebellum. They also suggest that millisecond time scale synchronous firing of electrically-coupled MLI1s helps regulate the output of the cerebellar cortex by synchronously pausing PC firing, which has been shown to evoke precisely-timed firing in PC targets18.

5.
J Neurosci ; 43(34): 6035-6045, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37507229

RESUMEN

Unipolar brush cells (UBCs) in the cerebellum and dorsal cochlear nucleus (DCN) perform temporal transformations by converting brief mossy fiber bursts into long-lasting responses. In the cerebellar UBC population, mixing inhibition with graded mGluR1-dependent excitation leads to a continuum of temporal responses. In the DCN, it has been thought that mGluR1 contributes little to mossy fiber responses and that there are distinct excitatory and inhibitory UBC subtypes. Here, we investigate UBC response properties using noninvasive cell-attached recordings in the DCN of mice of either sex. We find a continuum of responses to mossy fiber bursts ranging from 100 ms excitation to initial inhibition followed by several seconds of excitation to inhibition lasting for hundreds of milliseconds. Pharmacological interrogation reveals excitatory responses are primarily mediated by mGluR1 Thus, UBCs in both the DCN and cerebellum rely on mGluR1 and have a continuum of response durations. The continuum of responses in the DCN may allow more flexible and efficient temporal processing than can be achieved with distinct excitatory and inhibitory populations.SIGNIFICANCE STATEMENT UBCs are specialized excitatory interneurons in cerebellar-like structures that greatly prolong the temporal responses of mossy fiber inputs. They are thought to help cancel out self-generated signals. In the DCN, the prevailing view was that there are two distinct ON and OFF subtypes of UBCs. Here, we show that instead the UBC population has a continuum of response properties. Many cells show suppression and excitation consecutively, and the response durations vary considerably. mGluR1s are crucial in generating a continuum of responses. To understand how UBCs contribute to temporal processing, it is essential to consider the continuous variations of UBC responses, which have advantages over just having opposing ON/OFF subtypes of UBCs.


Asunto(s)
Núcleo Coclear , Ratones , Animales , Fibras Nerviosas/fisiología , Neuronas/fisiología , Corteza Cerebelosa/fisiología , Cerebelo/fisiología
6.
bioRxiv ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37292884

RESUMEN

Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons convey signals from the cerebellar cortex to the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many uniform sized PC inputs are thought to converge onto each CbN neuron to suppress or eliminate firing. Leading theories maintain that PCs encode information using either a rate code, or by synchrony and precise timing. Individual PCs are thought to have limited influence on CbN neuron firing. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modelling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, PC-CbN synapses are suited to concurrently convey rate codes, and generate precisely-timed responses in CbN neurons. Variable input sizes also elevate the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. Although this reduces the relative influence of PC synchrony on the firing rate of CbN neurons, synchrony can still have important consequences, because synchronizing even two large inputs can significantly increase CbN neuron firing. These findings may be generalized to other brain regions with highly variable sized synapses.

7.
Cell Rep ; 42(5): 112429, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37141091

RESUMEN

Within the cerebellar cortex, mossy fibers (MFs) excite granule cells (GCs) that excite Purkinje cells (PCs), which provide outputs to the deep cerebellar nuclei (DCNs). It is well established that PC disruption produces motor deficits such as ataxia. This could arise from either decreases in ongoing PC-DCN inhibition, increases in the variability of PC firing, or disruption of the flow of MF-evoked signals. Remarkably, it is not known whether GCs are essential for normal motor function. Here we address this issue by selectively eliminating calcium channels that mediate transmission (CaV2.1, CaV2.2, and CaV2.3) in a combinatorial manner. We observe profound motor deficits but only when all CaV2 channels are eliminated. In these mice, the baseline rate and variability of PC firing are unaltered, and locomotion-dependent increases in PC firing are eliminated. We conclude that GCs are indispensable for normal motor performance and that disruption of MF-induced signals impairs motor performance.


Asunto(s)
Cerebelo , Neuronas , Ratones , Animales , Cerebelo/fisiología , Neuronas/fisiología , Células de Purkinje/fisiología , Corteza Cerebelosa/fisiología , Transducción de Señal
9.
Nature ; 613(7944): 543-549, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36418404

RESUMEN

The cerebellum is thought to help detect and correct errors between intended and executed commands1,2 and is critical for social behaviours, cognition and emotion3-6. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise7. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer8-13. However, maximizing encoding capacity reduces the resilience to noise7. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.


Asunto(s)
Corteza Cerebelosa , Red Nerviosa , Vías Nerviosas , Neuronas , Animales , Ratones , Corteza Cerebelosa/citología , Corteza Cerebelosa/fisiología , Corteza Cerebelosa/ultraestructura , Redes Neurales de la Computación , Neuronas/citología , Neuronas/fisiología , Neuronas/ultraestructura , Red Nerviosa/citología , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Microscopía Electrónica de Transmisión
10.
J Neurosci ; 42(40): 7581-7593, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35995561

RESUMEN

Purkinje cells (PCs) are spontaneously active neurons of the cerebellar cortex that inhibit glutamatergic projection neurons within the deep cerebellar nuclei (DCN) that provide the primary cerebellar output. Brief reductions of PC firing rapidly increase DCN neuron firing. However, prolonged reductions of PC inhibition, as seen in some disease states, certain types of transgenic mice, during optogenetic suppression of PC firing, and in acute slices of the cerebellum, do not lead to large, sustained increases in DCN firing. Here we test whether DCN neurons undergo spike frequency adaptation that could account for these properties. We perform current-clamp recordings at near physiological temperature in acute brain slices from mice of both sexes to examine how DCN neurons respond to prolonged depolarizations. DCN neuron adaptation is exceptionally slow and bidirectional. A depolarizing current step evokes large initial increases in firing that decay to ∼20% of the initial increase within ∼10 s. We find that spike frequency adaptation in DCN neurons is mediated by a novel mechanism that is independent of the most promising candidates, including calcium entry and Na+-activated potassium channels mediated by Slo2.1 and Slo2.2 Slow adaptation allows DCN neurons to gradually and bidirectionally adapt to prolonged currents but to respond linearly to current injection on rapid timescales. This suggests that an important consequence of slow adaptation is that DCN neurons respond linearly to the rate of PC firing on rapid timescales but adapt to slow firing rate changes of PCs on long timescales.SIGNIFICANCE STATEMENT Excitatory neurons in the cerebellar nuclei provide the primary output from the cerebellum. This study finds that these neurons exhibit very slow bidirectional spike frequency adaptation that has important implications for cerebellar function. This mechanism allows neurons in the cerebellar nuclei to adapt to long-lasting changes in synaptic drive while also remaining responsive to short-term changes in excitatory or inhibitory drive.


Asunto(s)
Núcleos Cerebelosos , Neuronas , Masculino , Femenino , Ratones , Animales , Núcleos Cerebelosos/fisiología , Neuronas/fisiología , Células de Purkinje/fisiología , Cerebelo , Interneuronas , Ratones Transgénicos , Potenciales de Acción/fisiología , Canales de potasio activados por Sodio , Proteínas del Tejido Nervioso
11.
Annu Rev Neurosci ; 45: 151-175, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803588

RESUMEN

The cerebellar cortex is an important system for relating neural circuits and learning. Its promise reflects the longstanding idea that it contains simple, repeated circuit modules with only a few cell types and a single plasticity mechanism that mediates learning according to classical Marr-Albus models. However, emerging data have revealed surprising diversity in neuron types, synaptic connections, and plasticity mechanisms, both locally and regionally within the cerebellar cortex. In light of these findings, it is not surprising that attempts to generate a holistic model of cerebellar learning across different behaviors have not been successful. While the cerebellum remains an ideal system for linking neuronal function with behavior, it is necessary to update the cerebellar circuit framework to achieve its great promise. In this review, we highlight recent advances in our understanding of cerebellar-cortical cell types, synaptic connections, signaling mechanisms, and forms of plasticity that enrich cerebellar processing.


Asunto(s)
Plasticidad Neuronal , Células de Purkinje , Corteza Cerebelosa/fisiología , Cerebelo , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología
12.
Nat Neurosci ; 25(6): 702-713, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35578131

RESUMEN

To understand how the cerebellar cortex transforms mossy fiber (MF) inputs into Purkinje cell (PC) outputs, it is vital to delineate the elements of this circuit. Candelabrum cells (CCs) are enigmatic interneurons of the cerebellar cortex that have been identified based on their morphology, but their electrophysiological properties, synaptic connections and function remain unknown. Here, we clarify these properties using electrophysiology, single-nucleus RNA sequencing, in situ hybridization and serial electron microscopy in mice. We find that CCs are the most abundant PC layer interneuron. They are GABAergic, molecularly distinct and present in all cerebellar lobules. Their high resistance renders CC firing highly sensitive to synaptic inputs. CCs are excited by MFs and granule cells and are strongly inhibited by PCs. CCs in turn primarily inhibit molecular layer interneurons, which leads to PC disinhibition. Thus, inputs, outputs and local signals converge onto CCs to allow them to assume a unique role in controlling cerebellar output.


Asunto(s)
Corteza Cerebelosa , Interneuronas , Animales , Corteza Cerebelosa/fisiología , Cerebelo/fisiología , Interneuronas/fisiología , Ratones , Neuronas/fisiología , Células de Purkinje/fisiología
14.
Nature ; 598(7879): 214-219, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616064

RESUMEN

The cerebellar cortex is a well-studied brain structure with diverse roles in motor learning, coordination, cognition and autonomic regulation. However,  a complete inventory of cerebellar cell types is currently lacking. Here, using recent advances in high-throughput transcriptional profiling1-3, we molecularly define cell types across individual lobules of the adult mouse cerebellum. Purkinje neurons showed considerable regional specialization, with the greatest diversity occurring in the posterior lobules. For several types of cerebellar interneuron, the molecular variation within each type was more continuous, rather than discrete. In particular, for the unipolar brush cells-an interneuron population previously subdivided into discrete populations-the continuous variation in gene expression was associated with a graded continuum of electrophysiological properties. Notably, we found that molecular layer interneurons were composed of two molecularly and functionally distinct types. Both types show a continuum of morphological variation through the thickness of the molecular layer, but electrophysiological recordings revealed marked differences between the two types in spontaneous firing, excitability and electrical coupling. Together, these findings provide a comprehensive cellular atlas of the cerebellar cortex, and outline a methodological and conceptual framework for the integration of molecular, morphological and physiological ontologies for defining brain cell types.


Asunto(s)
Corteza Cerebelosa/citología , Perfilación de la Expresión Génica , Transcriptoma , Adulto , Animales , Atlas como Asunto , Electrofisiología , Femenino , Humanos , Interneuronas/clasificación , Interneuronas/citología , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroglía/clasificación , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo
15.
Nat Commun ; 12(1): 5491, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620856

RESUMEN

Many neuron types consist of populations with continuously varying molecular properties. Here, we show a continuum of postsynaptic molecular properties in three types of neurons and assess the functional correlates in cerebellar unipolar brush cells (UBCs). While UBCs are generally thought to form discrete functional subtypes, with mossy fiber (MF) activation increasing firing in ON-UBCs and suppressing firing in OFF-UBCs, recent work also points to a heterogeneity of response profiles. Indeed, we find a continuum of response profiles that reflect the graded and inversely correlated expression of excitatory mGluR1 and inhibitory mGluR2/3 pathways. MFs coactivate mGluR2/3 and mGluR1 in many UBCs, leading to sequential inhibition-excitation because mGluR2/3-currents are faster. Additionally, we show that DAG-kinase controls mGluR1 response duration, and that graded DAG kinase levels correlate with systematic variation of response duration over two orders of magnitude. These results demonstrate that continuous variations in metabotropic signaling can generate a stable cell-autonomous basis for temporal integration and learning over multiple time scales.


Asunto(s)
Corteza Cerebelosa/metabolismo , Fibras Nerviosas/fisiología , Neuronas/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Potenciales de Acción/efectos de los fármacos , Aminoácidos/farmacología , Animales , Corteza Cerebelosa/citología , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores , Femenino , Masculino , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp/métodos , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Factores de Tiempo , Xantenos/farmacología
16.
Cell Rep ; 36(12): 109719, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34551307

RESUMEN

Synaptotagmin 7 (Syt7) is a high-affinity calcium sensor that is implicated in multiple aspects of synaptic transmission. Here, we study the influence of Syt7 on the climbing fiber (CF) to Purkinje cell (PC) synapse. We find that small facilitation and prominent calcium-dependent recovery from depression at this synapse do not rely on Syt7 and that Syt7 is not normally present in CFs. We expressed Syt7 in CFs to assess the consequences of introducing Syt7 to a synapse that normally lacks Syt7. Syt7 expression does not promote asynchronous release or accelerate recovery from depression. Syt7 decreases the excitatory postsynaptic current (EPSC) magnitude, consistent with a decrease in the initial probability of release (PR). Syt7 also increases synaptic facilitation to such a large extent that it could not arise solely as an indirect consequence of decreased PR. Thus, the primary consequence of Syt7 expression in CFs, which normally lack Syt7, is to promote synaptic facilitation.


Asunto(s)
Sinapsis/metabolismo , Sinaptotagminas/metabolismo , Animales , Calcio/metabolismo , Calcio/farmacología , Depresión/metabolismo , Depresión/patología , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal , Neuronas/metabolismo , Células de Purkinje/citología , Células de Purkinje/metabolismo , Transmisión Sináptica , Sinaptotagminas/deficiencia , Sinaptotagminas/genética
17.
Elife ; 102021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34369877

RESUMEN

Circuitry of the cerebellar cortex is regionally and functionally specialized. Unipolar brush cells (UBCs), and Purkinje cell (PC) synapses made by axon collaterals in the granular layer, are both enriched in areas that control balance and eye movement. Here, we find a link between these specializations in mice: PCs preferentially inhibit metabotropic glutamate receptor type 1 (mGluR1)-expressing UBCs that respond to mossy fiber (MF) inputs with long lasting increases in firing, but PCs do not inhibit mGluR1-lacking UBCs. PCs inhibit about 29% of mGluR1-expressing UBCs by activating GABAA receptors (GABAARs) and inhibit almost all mGluR1-expressing UBCs by activating GABAB receptors (GABABRs). PC to UBC synapses allow PC output to regulate the input layer of the cerebellar cortex in diverse ways. Based on optogenetic studies and a small number of paired recordings, GABAAR-mediated feedback is fast and unreliable. GABABR-mediated inhibition is slower and is sufficiently large to strongly influence the input-output transformations of mGluR1-expressing UBCs.


Asunto(s)
Axones/metabolismo , Células de Purkinje/metabolismo , Sinapsis/fisiología , Animales , Ratones , Receptores de Glutamato Metabotrópico/metabolismo
18.
J Neurosci ; 41(35): 7329-7339, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34290081

RESUMEN

Post-tetanic potentiation (PTP) is a form of short-term plasticity that lasts for tens of seconds following a burst of presynaptic activity. It has been proposed that PTP arises from protein kinase C (PKC) phosphorylation of Munc18-1, an SM (Sec1/Munc-18 like) family protein that is essential for release. To test this model, we made a knock-in mouse in which all Munc18-1 PKC phosphorylation sites were eliminated through serine-to-alanine point mutations (Munc18-1SA mice), and we studied mice of either sex. The expression of Munc18-1 was not altered in Munc18-1SA mice, and there were no obvious behavioral phenotypes. At the hippocampal CA3-to-CA1 synapse and the granule cell parallel fiber (PF)-to-Purkinje cell (PC) synapse, basal transmission was largely normal except for small decreases in paired-pulse facilitation that are consistent with a slight elevation in release probability. Phorbol esters that mimic the activation of PKC by diacylglycerol still increased synaptic transmission in Munc18-1SA mice. In Munc18-1SA mice, 70% of PTP remained at CA3-to-CA1 synapses, and the amplitude of PTP was not reduced at PF-to-PC synapses. These findings indicate that at both CA3-to-CA1 and PF-to-PC synapses, phorbol esters and PTP enhance synaptic transmission primarily by mechanisms that are independent of PKC phosphorylation of Munc18-1.SIGNIFICANCE STATEMENT A leading mechanism for a prevalent form of short-term plasticity, post-tetanic potentiation (PTP), involves protein kinase C (PKC) phosphorylation of Munc18-1. This study tests this mechanism by creating a knock-in mouse in which Munc18-1 is replaced by a mutated form of Munc18-1 that cannot be phosphorylated. The main finding is that most PTP at hippocampal CA3-to-CA1 synapses or at cerebellar granule cell-to-Purkinje cell synapses does not rely on PKC phosphorylation of Munc18-1. Thus, mechanisms independent of PKC phosphorylation of Munc18-1 are important mediators of PTP.


Asunto(s)
Proteínas Munc18/metabolismo , Plasticidad Neuronal/fisiología , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Animales , Femenino , Técnicas de Sustitución del Gen , Hipocampo/fisiología , Masculino , Ratones , Ratones Noqueados , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Proteínas Munc18/deficiencia , Mutación Missense , Ésteres del Forbol/farmacología , Fosforilación , Mutación Puntual , Proteína Quinasa C/deficiencia , Células de Purkinje/fisiología , Proteínas Recombinantes/metabolismo , Transmisión Sináptica/efectos de los fármacos
19.
Elife ; 92020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33259288

RESUMEN

The inferior olive (IO) is composed of electrically-coupled neurons that make climbing fiber synapses onto Purkinje cells. Neurons in different IO subnuclei are inhibited by synapses with wide ranging release kinetics. Inhibition can be exclusively synchronous, asynchronous, or a mixture of both. Whether the same boutons, neurons or sources provide these kinetically distinct types of inhibition was not known. We find that in mice the deep cerebellar nuclei (DCN) and vestibular nuclei (VN) are two major sources of inhibition to the IO that are specialized to provide inhibitory input with distinct kinetics. DCN to IO synapses lack fast synaptotagmin isoforms, release neurotransmitter asynchronously, and are exclusively GABAergic. VN to IO synapses contain fast synaptotagmin isoforms, release neurotransmitter synchronously, and are mediated by combined GABAergic and glycinergic transmission. These findings indicate that VN and DCN inhibitory inputs to the IO are suited to control different aspects of IO activity.


Asunto(s)
Cerebelo/metabolismo , Neurotransmisores/metabolismo , Núcleo Olivar/metabolismo , Sinapsis/metabolismo , Animales , Femenino , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibición Neural , Neuronas/metabolismo , Sinaptotagminas/metabolismo , Núcleos Vestibulares/metabolismo
20.
Cell Rep ; 33(5): 108338, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33147470

RESUMEN

Granule cells (GCs) of the cerebellar input layer express high-affinity δ GABAA subunit-containing GABAA receptors (δGABAARs) that respond to ambient GABA levels and context-dependent neuromodulators like steroids. We find that GC-specific deletion of δGABAA (cerebellar [cb] δ knockout [KO]) decreases tonic inhibition, makes GCs hyperexcitable, and in turn, leads to differential activation of cb output regions as well as many cortical and subcortical brain areas involved in cognition, anxiety-like behaviors, and the stress response. Cb δ KO mice display deficits in many behaviors, but motor function is normal. Strikingly, δGABAA deletion alters maternal behavior as well as spontaneous, stress-related, and social behaviors specifically in females. Our findings establish that δGABAARs enable the cerebellum to control diverse behaviors not previously associated with the cerebellum in a sex-dependent manner. These insights may contribute to a better understanding of the mechanisms that underlie behavioral abnormalities in psychiatric and neurodevelopmental disorders that display a gender bias.


Asunto(s)
Cerebelo/metabolismo , Eliminación de Gen , Subunidades de Proteína/metabolismo , Receptores de GABA-A/metabolismo , Caracteres Sexuales , Animales , Ansiedad/patología , Conducta Animal , Femenino , Aprendizaje , Masculino , Conducta Materna , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Especificidad de Órganos , Estrés Psicológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA