Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
BMC Cancer ; 23(1): 577, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349697

RESUMEN

BACKGROUND: Despite their heterogeneity, the current standard preoperative radiotherapy regimen for localized high-grade soft tissue sarcoma (STS) follows a one fits all approach for all STS subtypes. Sarcoma patient-derived three-dimensional cell culture models represent an innovative tool to overcome challenges in clinical research enabling reproducible subtype-specific research on STS. In this pilot study, we present our methodology and preliminary results using STS patient-derived 3D cell cultures that were exposed to different doses of photon and proton radiation. Our aim was: (i) to establish a reproducible method for irradiation of STS patient-derived 3D cell cultures and (ii) to explore the differences in tumor cell viability of two different STS subtypes exposed to increasing doses of photon and proton radiation at different time points. METHODS: Two patient-derived cell cultures of untreated localized high-grade STS (an undifferentiated pleomorphic sarcoma (UPS) and a pleomorphic liposarcoma (PLS)) were exposed to a single fraction of photon or proton irradiation using doses of 0 Gy (sham irradiation), 2 Gy, 4 Gy, 8 Gy and 16 Gy. Cell viability was measured and compared to sham irradiation at two different time points (four and eight days after irradiation). RESULTS: The proportion of viable tumor cells four days after photon irradiation for UPS vs. PLS were significantly different with 85% vs. 65% (4 Gy), 80% vs. 50% (8 Gy) and 70% vs. 35% (16 Gy). Proton irradiation led to similar diverging viability curves between UPS vs. PLS four days after irradiation with 90% vs. 75% (4 Gy), 85% vs. 45% (8 Gy) and 80% vs. 35% (16 Gy). Photon and proton radiation displayed only minor differences in cell-killing properties within each cell culture (UPS and PLS). The cell-killing effect of radiation sustained at eight days after irradiation in both cell cultures. CONCLUSIONS: Pronounced differences in radiosensitivity are evident among UPS and PLS 3D patient-derived sarcoma cell cultures which may reflect the clinical heterogeneity. Photon and proton radiation showed similar dose-dependent cell-killing effectiveness in both 3D cell cultures. Patient-derived 3D STS cell cultures may represent a valuable tool to enable translational studies towards individualized subtype-specific radiotherapy in patients with STS.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Protones , Proyectos Piloto , Sarcoma/radioterapia , Sarcoma/cirugía , Fotones/uso terapéutico
2.
Cancers (Basel) ; 14(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35805024

RESUMEN

Background: In colorectal cancer (CRC), mutations of genes associated with the TGF-ß/BMP signaling pathway, particularly affecting SMAD4, are known to correlate with decreased overall survival and it is assumed that this signaling axis plays a key role in chemoresistance. Methods: Using CRISPR technology on syngeneic patient-derived organoids (PDOs), we investigated the role of a loss-of-function of SMAD4 in sensitivity to MEK-inhibitors. CRISPR-engineered SMAD4R361H PDOs were subjected to drug screening, RNA-Sequencing, and multiplex protein profiling (DigiWest®). Initial observations were validated on an additional set of 62 PDOs with known mutational status. Results: We show that loss-of-function of SMAD4 renders PDOs sensitive to MEK-inhibitors. Multiomics analyses indicate that disruption of the BMP branch within the TGF-ß/BMP pathway is the pivotal mechanism of increased drug sensitivity. Further investigation led to the identification of the SFAB-signature (SMAD4, FBXW7, ARID1A, or BMPR2), coherently predicting sensitivity towards MEK-inhibitors, independent of both RAS and BRAF status. Conclusion: We identified a novel mutational signature that reliably predicts sensitivity towards MEK-inhibitors, regardless of the RAS and BRAF status. This finding poses a significant step towards better-tailored cancer therapies guided by the use of molecular biomarkers.

3.
iScience ; 25(7): 104498, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35720265

RESUMEN

Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.

4.
Front Cell Dev Biol ; 9: 760705, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805167

RESUMEN

Pancreatic cancer is one of the deadliest cancers and remains a major unsolved health problem. While pancreatic ductal adenocarcinoma (PDAC) is associated with driver mutations in only four major genes (KRAS, TP53, SMAD4, and CDKN2A), every tumor differs in its molecular landscape, histology, and prognosis. It is crucial to understand and consider these differences to be able to tailor treatment regimens specific to the vulnerabilities of the individual tumor to enhance patient outcome. This review focuses on the heterogeneity of pancreatic tumor cells and how in addition to genetic alterations, the subsequent dysregulation of multiple signaling cascades at various levels, epigenetic and metabolic factors contribute to the oncogenesis of PDAC and compensate for each other in driving cancer progression if one is tackled by a therapeutic approach. This implicates that besides the need for new combinatorial therapies for PDAC, a personalized approach for treating this highly complex cancer is required. A strategy that combines both a target-based and phenotypic approach to identify an effective treatment, like Reverse Clinical Engineering® using patient-derived organoids, is discussed as a promising way forward in the field of personalized medicine to tackle this deadly disease.

5.
iScience ; 24(6): 102618, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34142064

RESUMEN

Recent data suggest that therapy-resistant quiescent cancer stem cells (qCSCs) are the source of relapse in colon cancer. Here, using colon cancer patient-derived organoids and xenografts, we identify rare long-term label-retaining qCSCs that can re-enter the cell cycle to generate new tumors. RNA sequencing analyses demonstrated that these cells display the molecular hallmarks of quiescent tissue stem cells, including expression of p53 signaling genes, and are enriched for transcripts common to damage-induced quiescent revival stem cells of the regenerating intestine. In addition, we identify negative regulators of cell cycle, downstream of p53, that we show are indicators of poor prognosis and may be targeted for qCSC abolition in both p53 wild-type and mutant tumors. These data support the temporal inhibition of downstream targets of p53 signaling, in combination with standard-of-care treatments, for the elimination of qCSCs and prevention of relapse in colon cancer.

6.
Cells ; 10(4)2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920536

RESUMEN

Cancer is a multifactorial disease with increasing incidence. There are more than 100 different cancer types, defined by location, cell of origin, and genomic alterations that influence oncogenesis and therapeutic response. This heterogeneity between tumors of different patients and also the heterogeneity within the same patient's tumor pose an enormous challenge to cancer treatment. In this review, we explore tumor heterogeneity on the longitudinal and the latitudinal axis, reviewing current and future approaches to study this heterogeneity and their potential to support oncologists in tailoring a patient's treatment regimen. We highlight how the ideal of precision oncology is reaching far beyond the knowledge of genetic variants to inform clinical practice and discuss the technologies and strategies already available to improve our understanding and management of heterogeneity in cancer treatment. We will focus on integrating multi-omics technologies with suitable in vitro models and their proficiency in mimicking endogenous tumor heterogeneity.


Asunto(s)
Genómica , Oncología Médica , Medicina de Precisión , Heterogeneidad Genética , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/terapia
7.
Int J Cancer ; 146(4): 1031-1041, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31304977

RESUMEN

Accurate modeling of intratumor heterogeneity presents a bottleneck against drug testing. Flexibility in a preclinical platform is also desirable to support assessment of different endpoints. We established the model system, OHC-NB1, from a bone marrow metastasis from a patient diagnosed with MYCN-amplified neuroblastoma and performed whole-exome sequencing on the source metastasis and the different models and passages during model development (monolayer cell line, 3D spheroid culture and subcutaneous xenograft tumors propagated in mice). OHC-NB1 harbors a MYCN amplification in double minutes, 1p deletion, 17q gain and diploid karyotype, which persisted in all models. A total of 80-540 single-nucleotide variants (SNVs) was detected in each sample, and comparisons between the source metastasis and models identified 34 of 80 somatic SNVs to be propagated in the models. Clonal reconstruction using the combined copy number and SNV data revealed marked clonal heterogeneity in the originating metastasis, with four clones being reflected in the model systems. The set of OHC-NB1 models represents 43% of somatic SNVs and 23% of the cellularity in the originating metastasis with varying clonal compositions, indicating that heterogeneity is partially preserved in our model system.


Asunto(s)
Modelos Animales de Enfermedad , Neuroblastoma/genética , Neuroblastoma/patología , Neoplasias Abdominales/genética , Neoplasias Abdominales/patología , Animales , Femenino , Heterogeneidad Genética , Xenoinjertos , Humanos , Masculino , Ratones , Ratones SCID , Neoplasias Torácicas/genética , Neoplasias Torácicas/patología , Células Tumorales Cultivadas
8.
PLoS Genet ; 15(3): e1008076, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30925167

RESUMEN

Organoid cultures derived from colorectal cancer (CRC) samples are increasingly used as preclinical models for studying tumor biology and the effects of targeted therapies under conditions capturing in vitro the genetic make-up of heterogeneous and even individual neoplasms. While 3D cultures are initiated from surgical specimens comprising multiple cell populations, the impact of tumor heterogeneity on drug effects in organoid cultures has not been addressed systematically. Here we have used a cohort of well-characterized CRC organoids to study the influence of tumor heterogeneity on the activity of the KRAS/MAPK-signaling pathway and the consequences of treatment by inhibitors targeting EGFR and downstream effectors. MAPK signaling, analyzed by targeted proteomics, shows unexpected heterogeneity irrespective of RAS mutations and is associated with variable responses to EGFR inhibition. In addition, we obtained evidence for intratumoral heterogeneity in drug response among parallel "sibling" 3D cultures established from a single KRAS-mutant CRC. Our results imply that separate testing of drug effects in multiple subpopulations may help to elucidate molecular correlates of tumor heterogeneity and to improve therapy response prediction in patients.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neoplasias Colorrectales/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Línea Celular Tumoral , Estudios de Cohortes , Neoplasias Colorrectales/fisiopatología , Resistencia a Antineoplásicos/genética , Femenino , Genes erbB-1 , Humanos , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Mutación , Organoides/metabolismo , Organoides/fisiología , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Transducción de Señal , Proteínas ras/genética
9.
Front Pharmacol ; 9: 77, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29491834

RESUMEN

Recent advances in next-generation sequencing and other omics technologies capable to map cell fate provide increasing evidence on the crucial role of intra-tumor heterogeneity (ITH) for cancer progression. The different facets of ITH, from genomic to microenvironmental heterogeneity and the hierarchical cellular architecture originating from the cancer stem cell compartment, contribute to the range of tumor phenotypes. Decoding these complex data resulting from the analysis of tumor tissue complexity poses a challenge for developing novel therapeutic strategies that can counteract tumor evolution and cellular plasticity. To achieve this aim, the development of in vitro and in vivo cancer models that resemble the complexity of ITH is crucial in understanding the interplay of cells and their (micro)environment and, consequently, in testing the efficacy of new targeted treatments and novel strategies of tailoring combinations of treatments to the individual composition of the tumor. This challenging approach may be an important cornerstone in overcoming the development of pharmaco-resistances during multiple lines of treatment. In this paper, we report the latest advances in patient-derived 3D (PD3D) cell cultures and patient-derived tumor xenografts (PDX) as in vitro and in vivo models that can retain the genetic and phenotypic heterogeneity of the tumor tissue.

10.
Cell Rep ; 21(10): 2813-2828, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212028

RESUMEN

Colon cancer is a heterogeneous tumor driven by a subpopulation of cancer stem cells (CSCs). To study CSCs in colon cancer, we used limiting dilution spheroid and serial xenotransplantation assays to functionally define the frequency of CSCs in a panel of patient-derived cancer organoids. These studies demonstrated cancer organoids to be enriched for CSCs, which varied in frequency between tumors. Whole-transcriptome analysis identified WNT and Hedgehog signaling components to be enhanced in CSC-enriched tumors and in aldehyde dehydrogenase (ALDH)-positive CSCs. Canonical GLI-dependent Hedgehog signaling is a negative regulator of WNT signaling in normal intestine and intestinal tumors. Here, we show that Hedgehog signaling in colon CSCs is autocrine SHH-dependent, non-canonical PTCH1 dependent, and GLI independent. In addition, using small-molecule inhibitors and RNAi against SHH-palmitoylating Hedgehog acyltransferase (HHAT), we demonstrate that non-canonical Hedgehog signaling is a positive regulator of WNT signaling and required for colon CSC survival.


Asunto(s)
Neoplasias del Colon/metabolismo , Proteínas Hedgehog/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Vía de Señalización Wnt/fisiología
11.
Front Oncol ; 7: 203, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28955656

RESUMEN

Over the past decade, the development of new targeted therapeutics directed against specific molecular pathways involved in tumor cell proliferation and survival has allowed an essential improvement in carcinoma treatment. Unfortunately, the scenario is different for sarcomas, a group of malignant neoplasms originating from mesenchymal cells, for which the main therapeutic approach still consists in the combination of surgery, chemotherapy, and radiation therapy. The lack of innovative approaches in sarcoma treatment stems from the high degree of heterogeneity of this tumor type, with more that 70 different histopathological subtypes, and the limited knowledge of the molecular drivers of tumor development and progression. Currently, molecular therapies are available mainly for the treatment of gastrointestinal stromal tumor, a soft-tissue malignancy characterized by an activating mutation of the tyrosine kinase KIT. Since the first application of this approach, a strong effort has been made to understand sarcoma molecular alterations that can be potential targets for therapy. The low incidence combined with the high level of histopathological heterogeneity makes the development of clinical trials for sarcomas very challenging. For this reason, preclinical studies are needed to better understand tumor biology with the aim to develop new targeted therapeutics. Currently, these studies are mainly based on in vitro testing, since cell lines, and in particular patient-derived models, represent a reliable and easy to handle tool for investigation. In the present review, we summarize the most important models currently available in the field, focusing in particular on the three-dimensional spheroid/organoid model. This innovative approach for studying tumor biology better represents tissue architecture and cell-cell as well as cell-microenvironment crosstalk, which are fundamental steps for tumor cell proliferation and survival.

12.
Nat Commun ; 8: 14262, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186126

RESUMEN

Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I-IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.


Asunto(s)
Biomarcadores de Tumor/genética , Cetuximab/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Persona de Mediana Edad , Adulto Joven
13.
J Biomol Screen ; 21(9): 931-41, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27233291

RESUMEN

The application of patient-derived three-dimensional culture systems as disease-specific drug sensitivity models has enormous potential to connect compound screening and clinical trials. However, the implementation of complex cell-based assay systems in drug discovery requires reliable and robust screening platforms. Here we describe the establishment of an automated platform in 384-well format for three-dimensional organoid cultures derived from colon cancer patients. Single cells were embedded in an extracellular matrix by an automated workflow and subsequently self-organized into organoid structures within 4 days of culture before being exposed to compound treatment. We performed validation of assay robustness and reproducibility via plate uniformity and replicate-experiment studies. After assay optimization, the patient-derived organoid platform passed all relevant validation criteria. In addition, we introduced a streamlined plate uniformity study to evaluate patient-derived colon cancer samples from different donors. Our results demonstrate the feasibility of using patient-derived tumor samples for high-throughput assays and their integration as disease-specific models in drug discovery.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Técnicas de Cultivo de Célula/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Organoides/crecimiento & desarrollo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Organoides/patología , Esferoides Celulares/efectos de los fármacos
14.
Breast Cancer Res Treat ; 151(3): 709-15, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25981900

RESUMEN

Mastopathy is a common disease of the breast likely associated with elevated estrogen levels and a putative risk factor for breast cancer. The role of estrogen receptor alpha (ESR1) in mastopathy has not been investigated previously. Here, we investigated the prevalence of ESR1 gene amplification in mastopathy and its prediction for breast cancer. Paraffin-embedded tissues from 58 women with invasive breast cancer were analyzed. For all women, tissues with mastopathy taken at least 1.5 years before first diagnosis of breast cancer were available. Tissue from 46 women with mastopathy without a diagnosis of breast carcinoma in the observed time frame (12-18 years) was used as control. Fluorescence in situ hybridization analysis revealed that ESR1 was amplified in nine of 58 (15.5 %) breast cancers. All ESR1-amplified breast cancers were strongly positive for estrogen receptor with ER immunohistochemistry. Interestingly, in women with ESR1 amplification in breast cancer, the amplification was detectable in mastopathic tissues prior to the first diagnosis of breast cancer but was absent in tissues from women with mastopathy who did not develop breast cancer. Our study suggests that ESR1 gene amplification is an early event in breast pathology and might be a helpful predictive marker to identify patients at high risk of developing breast cancer.


Asunto(s)
Enfermedades de la Mama/complicaciones , Enfermedades de la Mama/genética , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etiología , Receptor alfa de Estrógeno/genética , Expresión Génica , Predisposición Genética a la Enfermedad , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Enfermedades de la Mama/patología , Enfermedades de la Mama/cirugía , Neoplasias de la Mama/diagnóstico , Estudios de Cohortes , Receptor alfa de Estrógeno/metabolismo , Femenino , Estudios de Seguimiento , Amplificación de Genes , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Persona de Mediana Edad , Curva ROC
15.
PLoS One ; 9(5): e92596, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24799129

RESUMEN

BACKGROUND: Large-scale genomic analyses of patient cohorts have revealed extensive heterogeneity between individual tumors, contributing to treatment failure and drug resistance. In malignant melanoma, heterogeneity is thought to arise as a consequence of the differentiation of melanoma-initiating cells that are defined by cell-surface markers like CD271 or CD133. RESULTS: Here we confirmed that the nerve growth factor receptor (CD271) is a crucial determinant of tumorigenicity, stem-like properties, heterogeneity and plasticity in melanoma cells. Stable shRNA mediated knock-down of CD271 in patient-derived melanoma cells abrogated their tumor-initiating and colony-forming capacity. A genome-wide expression profiling and gene-set enrichment analysis revealed novel connections of CD271 with melanoma-associated genes like CD133 and points to a neural crest stem cell (NCSC) signature lost upon CD271 knock-down. In a meta-analysis we have determined a shared set of 271 differentially regulated genes, linking CD271 to SOX10, a marker that specifies the neural crest. To dissect the connection of CD271 and CD133 we have analyzed 10 patient-derived melanoma-cell strains for cell-surface expression of both markers compared to established cell lines MeWo and A375. We found CD271+ cells in the majority of cell strains analyzed as well as in a set of 16 different patient-derived melanoma metastases. Strikingly, only 2/12 cell strains harbored a CD133+ sub-set that in addition comprised a fraction of cells of a CD271+/CD133+ phenotype. Those cells were found in the label-retaining fraction and in vitro deduced from CD271+ but not CD271 knock-down cells. CONCLUSIONS: Our present study provides a deeper insight into the regulation of melanoma cell properties and points CD271 out as a regulator of several melanoma-associated genes. Further, our data strongly suggest that CD271 is a crucial determinant of stem-like properties of melanoma cells like colony-formation and tumorigenicity.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Melanoma/metabolismo , Proteínas de Neoplasias/biosíntesis , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Receptores de Factor de Crecimiento Nervioso/biosíntesis , Antígeno AC133 , Animales , Antígenos CD/biosíntesis , Antígenos CD/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Glicoproteínas/biosíntesis , Glicoproteínas/genética , Humanos , Masculino , Melanoma/genética , Melanoma/patología , Metaanálisis como Asunto , Ratones , Ratones Endogámicos NOD , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/patología , Proteínas del Tejido Nervioso/genética , Péptidos/genética , Receptores de Factor de Crecimiento Nervioso/genética , Factores de Transcripción SOXE/biosíntesis , Factores de Transcripción SOXE/genética
16.
Cell Signal ; 26(2): 198-207, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24216609

RESUMEN

Flotillins are highly conserved and widely spread proteins that function in receptor tyrosine kinase signaling and membrane trafficking processes. Flotillin-1 and flotillin-2 have been shown to form both homo- and hetero-oligomers, and their cellular localization changes during signaling. Increased expression of flotillins has been detected in several types of cancer and shown to correlate with poor survival. Consistently, flotillin-2 knockout mice show a reduced formation of metastases in a breast cancer animal model. Our recent data have shown that flotillin-1 depletion results in diminished activation of the epidermal growth factor receptor and impairs its downstream signaling towards the mitogen activated protein kinases and the respective transcriptional response. Here we show that genetic ablation of flotillin-2 in a mouse model or its knockdown in cultured cells increases extracellular signal regulated kinase (ERK) activation. Furthermore, the downstream transcriptional targets of ERK and p53 are upregulated at both mRNA and protein levels. These data suggest that opposite effects are obtained upon ablation of one of the two flotillins, with flotillin-2 knockout/knockdown enhancing and flotillin-1 knockdown inhibiting ERK signaling. Due to their overexpression in cancers, flotillins may be considered as cancer therapy targets. However, our findings suggest that care needs to be taken when interfering with flotillin function, as undesired effects such as deregulation of growth-associated genes may emerge in certain cell types.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Línea Celular , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Células HeLa , Humanos , Pulmón/metabolismo , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Animales , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
Brief Bioinform ; 15(1): 65-78, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23047157

RESUMEN

Good accessibility of publicly funded research data is essential to secure an open scientific system and eventually becomes mandatory [Wellcome Trust will Penalise Scientists Who Don't Embrace Open Access. The Guardian 2012]. By the use of high-throughput methods in many research areas from physics to systems biology, large data collections are increasingly important as raw material for research. Here, we present strategies worked out by international and national institutions targeting open access to publicly funded research data via incentives or obligations to share data. Funding organizations such as the British Wellcome Trust therefore have developed data sharing policies and request commitment to data management and sharing in grant applications. Increased citation rates are a profound argument for sharing publication data. Pre-publication sharing might be rewarded by a data citation credit system via digital object identifiers (DOIs) which have initially been in use for data objects. Besides policies and incentives, good practice in data management is indispensable. However, appropriate systems for data management of large-scale projects for example in systems biology are hard to find. Here, we give an overview of a selection of open-source data management systems proved to be employed successfully in large-scale projects.


Asunto(s)
Sistemas de Administración de Bases de Datos , Biología de Sistemas/estadística & datos numéricos , Acceso a la Información , Biología Computacional , Recolección de Datos , Difusión de la Información , Internacionalidad , Programas Informáticos
18.
J Vis Exp ; (73): e50200, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23525090

RESUMEN

Despite improved treatments options for melanoma available today, patients with advanced malignant melanoma still have a poor prognosis for progression-free and overall survival. Therefore, translational research needs to provide further molecular evidence to improve targeted therapies for malignant melanomas. In the past, oncogenic mechanisms related to melanoma were extensively studied in established cell lines. On the way to more personalized treatment regimens based on individual genetic profiles, we propose to use patient-derived cell lines instead of generic cell lines. Together with high quality clinical data, especially on patient follow-up, these cells will be instrumental to better understand the molecular mechanisms behind melanoma progression. Here, we report the establishment of primary melanoma cultures from dissected fresh tumor tissue. This procedure includes mincing and dissociation of the tissue into single cells, removal of contaminations with erythrocytes and fibroblasts as well as primary culture and reliable verification of the cells' melanoma origin. Recent reports revealed that melanomas, like the majority of tumors, harbor a small subpopulation of cancer stem cells (CSCs), which seem to exclusively fuel tumor initiation and progression towards the metastatic state. One of the key markers for CSC identification and isolation in melanoma is CD133. To isolate CD133(+) CSCs from primary melanoma cultures, we have modified and optimized the Magnetic-Activated Cell Sorting (MACS) procedure from Miltenyi resulting in high sorting purity and viability of CD133(+) CSCs and CD133(-) bulk, which can be cultivated and functionally analyzed thereafter.


Asunto(s)
Antígenos CD/inmunología , Glicoproteínas/inmunología , Separación Inmunomagnética/métodos , Melanoma/inmunología , Melanoma/patología , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/patología , Péptidos/inmunología , Antígeno AC133 , Humanos
19.
Clin Exp Metastasis ; 30(6): 781-91, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23519726

RESUMEN

T cell based immunotherapy has been investigated in a variety of malignancies and analyses have been mostly founded on in vitro data with tumor cell monolayers. However, three-dimensional (3D) culture models might mimic more closely the 'in vivo' conditions than 2D monolayers. Therefore, we analyzed the expression of tumor-associated antigens (TAA) and of molecules involved in antigen processing and presentation (APM) in tumor spheres, which served as an in vitro model for micrometastasis which might be enriched in tumor propagating cancer stem cells. For enrichment of sphere cells 12 human solid tumor cell lines were cultured in serum-free medium. Expression of a variety of TAA and APM were analyzed by RT-PCR and/or flow cytometry and compared to expression in corresponding adherent bulk cells grown in regular growth medium. Compared to adherent cells, spheres showed equal or higher mRNA expression levels of LMP2, LMP7 and MECL-1, of TAP1 and TAP2 transporters and, surprisingly, also of TAA including differentiation antigens. However, downregulation or loss of HLA-I and HLA-II molecules in spheres was observed in 8 of 10 and 1 of 2 cell lines, respectively, and was unresponsive to stimulation with IFN-γ. Although tumor spheres express TAA and molecules of intracellular antigen processing, they are defective in antigen presentation due to downregulation of HLA surface expression which may lead to immune evasion.


Asunto(s)
Neoplasias/patología , Linfocitos T/inmunología , Presentación de Antígeno , Antígenos de Neoplasias/análisis , Línea Celular Tumoral , Proliferación Celular , Antígenos HLA/análisis , Humanos , Inmunoterapia , Interferón gamma/fisiología , Neoplasias/terapia , Células Madre Neoplásicas/patología , Escape del Tumor
20.
J Cancer Res Clin Oncol ; 137(3): 399-414, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20440511

RESUMEN

PURPOSE: Gliomas are highly invasive neuroepithelial tumors with a propensity of malignant transformation and very restricted treatment options. The neural cell adhesion molecule (NCAM) modulates cellular migration, proliferation, and synaptic plasticity by homophilic and heterophilic interactions. Hereby, we investigated its relevance as a glioma tissue marker for the biological aggressiveness of these tumors and compared these features with the carcinoma brain metastasis invasion zone. MATERIALS AND METHODS: We analyzed 194 human brain samples. Human tumor-free brain specimens served as control for the white and gray matter. In addition to that, we used human glioblastomas from nude rats. All tissues were investigated immunohistochemically for the expression of the NCAM isoform 140. Additionally, the multiplanar MRI-CT fusion neuronavigation-guided serial stereotactic biopsy was performed and completed by histopathological workup. RESULTS: Human gliomas loose NCAM-140 with the rise of their WHO grade. Meningiomas are NCAM-140 negative. As the most striking feature, human brain metastases and the majority of human glioblastomas of our patients and of nude rats were totally NCAM-140 negative. This NCAM negativity led us to the conclusion of three different main glioblastoma invasion patterns. Surprisingly, the majority of brain metastasis samples that contained surrounding brain parenchyma demonstrated invasive tumor cell nests beyond the sharply demarcated metastasis border. We also found invasive metastatic cell nests outside the contrast enhancing tumor zone by means of the MRI-CT fusion neuronavigation-guided serial stereotactic biopsy. CONCLUSION: The expression of NCAM-140 inversely correlates with the WHO grade of human gliomas. The lost expression of NCAM-140 in human glioblastomas and in brain metastases enables the investigation of the brain-tumor interface and the definition of glioblastoma invasion patterns and shows that brain metastases are more invasive than ever thought.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Moléculas de Adhesión Celular Neuronal/biosíntesis , Glioblastoma/metabolismo , Glioblastoma/patología , Animales , Astrocitoma/metabolismo , Astrocitoma/patología , Astrocitoma/secundario , Biopsia/métodos , Neoplasias Encefálicas/secundario , Glioblastoma/secundario , Humanos , Imagen por Resonancia Magnética/métodos , Meningioma/metabolismo , Meningioma/patología , Meningioma/secundario , Invasividad Neoplásica , Ratas , Ratas Desnudas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA