Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3857-3866, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37358795

RESUMEN

In pulmonary fibrosis, the proliferation of fibroblasts and their differentiation into myofibroblasts is often caused by tissue damage, such as oxidative damage caused by reactive oxygen species, which leads to progressive rupture and thus destruction of the alveolar architecture, resulting in cell proliferation and tissue remodeling. Bezafibrate (BZF) is an important member of the peroxisome proliferator-activated receptor (PPARs) family agonists, used in clinical practice as antihyperlipidemic. However, the antifibrotic effects of BZF are still poorly studied. The objective of this study was to evaluate the effects of BZF on pulmonary oxidative damage in lung fibroblast cells. MRC-5 cells were treated with hydrogen peroxide (H2O2) to induce oxidative stress activation and BZF treatment was administered at the same moment as H2O2 induction. The outcomes evaluated were cell proliferation and cell viability; oxidative stress markers such as reactive oxygen species (ROS), catalase (CAT) levels and thiobarbituric acid reactive substances (TBARS); col-1 and α-SMA mRNA expression and cellular elasticity through Young's modulus analysis evaluated by atomic force microscopy (AFM). The H2O2-induced oxidative damage decreased the cell viability and increased ROS levels and decreased CAT activity in MRC-5 cells. The expression of α-SMA and the cell stiffness increased in response to H2O2 treatment. Treatment with BZF decreased the MRC-5 cell proliferation, ROS levels, reestablished CAT levels, decreased the mRNA expression of type I collagen protein (col-1) and α-smooth muscle actin (α-SMA), and cellular elasticity even with H2O2 induction. Our results suggest that BZF has a potential protective effect on H2O2-induced oxidative stress. These results are based on an in vitro experiment, derived from a fetal lung cell line and may emerge as a possible new therapy for the treatment of pulmonary fibrosis.


Asunto(s)
Peróxido de Hidrógeno , Fibrosis Pulmonar , Humanos , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bezafibrato/farmacología , Bezafibrato/metabolismo , Fibrosis Pulmonar/patología , Pulmón/metabolismo , Estrés Oxidativo , Fibroblastos , ARN Mensajero/metabolismo
2.
Micron ; 151: 103152, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34607251

RESUMEN

Quercetin is a flavonoid found in a great variety of foods such as vegetables and fruits. This compound has been shown to inhibit the proliferation of various types of cancer cells, as well as the growth of tumors in animal models. In the present study, we analyze morphological and mechanical changes produced by quercetin in T24 bladder cancer cells. Decreased cell viability and cell number were observed following quercetin treatment at 40 µM and 60 µM, respectively, as observed by the MTT assay and trypan blue exclusion test, supporting the hypothesis of quercetin anticancer effect. These assays also allowed us to determine the 40, 60, and 80 µM quercetin concentrations for the following analyses, Lactate Dehydrogenase assay (LDH); Nuclear Morphometric Analysis (NMA); and atomic force microscopy (AFM). The LDH assay showed no cytotoxic effect of quercetin on T24 cancer cells. The AFM showed morphological changes following quercetin treatment, namely decreased cell body, cytoplasmic retraction, and membrane condensation. Following quercetin treatment, the NMA evidenced an increased percentage of nuclei characteristic to the apoptotic and senescence processes. Cells also presented biophysical alterations consistent with cell death by apoptosis, as increased roughness and aggregation of membrane proteins, in a dose-dependent manner. Cellular elasticity, obtained through force curves, showed increased stiffness after quercetin treatment. Data presented herein demonstrate, for the first time, in a quantitative and qualitative form, the morphological and mechanical alterations induced by quercetin on bladder cancer cells.


Asunto(s)
Quercetina , Neoplasias de la Vejiga Urinaria , Animales , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Humanos , Quercetina/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
3.
Eur J Pharmacol ; 890: 173670, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33098831

RESUMEN

Potassium 5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-olate (CPBMF65) is a potent inhibitor of the uridine phosphorylase 1 (UPP1) enzyme. Its non-ionized analog has already demonstrated biological properties by reducing adverse effects caused by the chemotherapeutic 5-fluorouracil (5-FU). In addition, it has been demonstrated that uridine inhibits inflammation and fibrosis in bleomycin lung injury, decreasing collagen production. The purpose of this study was to investigate the in vitro and in vivo effects of CPBMF65 on activated hepatic stellate cells (HSC) and on carbon tetrachloride-induced liver fibrosis in mice. After incubation with CPBMF65, decreased cell proliferation and phenotype reversion were observed in vitro. In addition, CPBMF65 promoted a protective effect on tetrachloride-induced liver fibrosis in mice, demonstrated by its antifibrotic and anti-inflammatory actions. The results of the present study indicate that the UPP1 inhibitor (CPBMF65) may have potential as a novel therapeutic agent for the treatment of liver fibrosis.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Uridina Fosforilasa/antagonistas & inhibidores , Animales , Tetracloruro de Carbono/toxicidad , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células Estrelladas Hepáticas/enzimología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/enzimología , Masculino , Ratones , Ratones Endogámicos BALB C , Distribución Aleatoria , Uridina Fosforilasa/metabolismo
4.
Toxicol In Vitro ; 48: 11-25, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29288082

RESUMEN

Octyl gallate (OG) is an antioxidant that has shown anti-tumor, anti-diabetic and anti-amyloidogenic activities. Mitochondria play an important role in hepatocellular carcinoma, mainly by maintaining accelerated cellular proliferation through the production of ATP. Thus, the mitochondria may be a target for antitumor therapies. Here, we investigated the effects of OG in the hepatocarcinoma cell line (HepG2) and the mechanisms involved. We report, for the first time, that treatment with OG for 24h inhibited HepG2 cell growth by decreasing mitochondrial activity and mass, which led to the reduction of ATP levels. This reduction in the energy supply triggered a decrease in Ki67 protein expression, leading cells to cycle arrest. In addition, treatment with two doses of OG for 48h induced loss of mitochondrial functionality, mitochondrial swelling and apoptosis. Finally, we report that HepG2 cells had no resistance to treatment after multiple doses. Collectively, our findings indicate that metabolic dysregulation and Ki67 protein reduction are key events in the initial anti-proliferative action of OG, whereas mitochondrial swelling and apoptosis induction are involved in the action mechanism of OG after prolonged exposure. This suggests that OG targets mitochondria, thus representing a candidate for further research on therapies for hepatocarcinoma.


Asunto(s)
Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Ácido Gálico/análogos & derivados , Antígeno Ki-67/biosíntesis , Mitocondrias/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/ultraestructura , Proliferación Celular/efectos de los fármacos , Resistencia a Medicamentos , Metabolismo Energético/efectos de los fármacos , Ácido Gálico/farmacología , Células Hep G2 , Humanos , Antígeno Ki-67/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Orgánulos/efectos de los fármacos , Orgánulos/ultraestructura , Fagosomas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA