RESUMEN
Avian migration is an intrinsic biological phenomenon that involves trans-boundary movements to evade adverse ecological circumstances. During migration, avian gut bacterial taxa may serve as a potential source of bacterial dissemination via fecal contamination at stop-over sites. Therefore, bacterial taxa composition as well as diversities were investigated employing 16S rRNA sequencing in fecal samples collected from flocks of seven migratory avian species visiting southern districts of Khyber Pakhtunkhwa, Pakistan. The analysis revealed that Grus virgo exhibits the highest alpha diversity, followed by Aythya ferina while G. grus reflects lowest diversity among all the migratory avian fecal samples. The findings depicted significant variations in the bacterial beta diversities of migratory avifauna. At phylum level, Firmicutes, Proteobacteria, and Actinobacteriota showed the highest relative abundance in Plegadis falcinellus, Chlamydotis undulata and Aythya ferina respectively. Further exploration within phyla elucidates finer-scale taxonomic differences at the family and genus levels. This study identified potential pathogenic bacteria such as Staphylococcus, Streptococcus, Enterococcus, Proteus, Clostridium sensu stricto 1, Fusobacterium and Escherichia that offers valuable insight into the microbiological hazards associated with migratory birds. Although pathogenicity was not directly assessed, the observed relative abundance of opportunistic bacterial genera suggests continuous surveillance of gut bacterial community during migration to safeguard avian biodiversity and mitigate escalating threats of infection emergence and dissemination.
Asunto(s)
Migración Animal , Bacterias , Aves , Heces , Microbioma Gastrointestinal , Filogenia , ARN Ribosómico 16S , Animales , ARN Ribosómico 16S/genética , Heces/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Aves/microbiología , Microbioma Gastrointestinal/genética , Pakistán , ADN Bacteriano/genética , Biodiversidad , Análisis de Secuencia de ADNRESUMEN
The phytochemical study of the Diaporthe species has revealed significant classes of mycotoxins and phomopsins. Dihydroanthracenone derivatives, chromanones and isochromophilones have also been isolated from Diaporthe sp. These findings led us to explore the Diaporthe perseae for phytochemical analysis that resulted in the isolation of four new compounds designated as isochromophilones H-K (1-4), alongside three previously identified metabolites. Using extensive spectroscopic investigations such as NMR, and Mass spectroscopy, their structures were elucidated. Furthermore, the antimicrobial and anti-diabetic potentials of all isolated compounds were assessed. Compounds 1-3 demonstrated significant antibacterial activity, while compounds 4-7 exhibited comparatively lower effectiveness than the reference antibiotics. Compounds 2-3 showed potent diabetic inhibition, displaying IC50 values of 16.3 ± 0.3 and 25.4 ± 0.3, respectively. Compounds 1, 5, and 6 displayed mild anti-diabetic effects, with IC50 values of 56.5 ± 0.8, 37.6 ± 0.4, and 48.2 ± 0.6. However, compounds 4 and 7 were found least active.
Asunto(s)
Ascomicetos , Benzopiranos , Hipoglucemiantes , Pruebas de Sensibilidad Microbiana , Millettia , Benzopiranos/farmacología , Benzopiranos/química , Benzopiranos/aislamiento & purificación , Ascomicetos/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/química , Millettia/química , Pigmentos Biológicos/farmacología , Pigmentos Biológicos/química , Pigmentos Biológicos/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Estructura Molecular , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Bacterias/efectos de los fármacos , Espectrometría de MasasRESUMEN
Despite the diversity of microbiota in birds is similar to that of other animals, there is a lack of research on the gut microbial diversity of nondomesticated bird species. This study aims to address this gap in knowledge by analyzing the bacterial communities present in the gut of two important game bird species, the Ring-necked pheasant (Phasianus colchicus) and the Green pheasant (Phasianus versicolor) to understand the gut microbial diversity of these species. The gut microbiome of 10 individual pheasants from two different species was studied using pooled fecal samples. We used 16S rRNA gene sequencing on the Ion S5 XL System next-generation sequencing with Mothur and SILVA Database for taxonomic division. An average of 141 different operational taxonomic units were detected in the gut microbiome. Analysis of microbial classification revealed the presence of 191 genera belonging to 12 different phyla in both pheasants. Alpha diversity indices revealed that P. colchicus exhibited most prevalence firmicutes with bacillus species microbial community than P. versicolor. Alpha diversity indices indicated that P. colchicus had a more diverse community and P. versicolor had a greater diversity of evolutionary lineages, while both species had similar levels of species richness and sample inclusiveness. These findings may have implications for the health and well-being of pheasants, serving as a reference for their bacterial diversity. Additionally, they provide a baseline for future research and conservation efforts aimed at improving the health and well-being of these and possibly other avian species.
Asunto(s)
Bacterias , Galliformes , Microbioma Gastrointestinal , ARN Ribosómico 16S , Animales , ARN Ribosómico 16S/genética , Galliformes/microbiología , Bacterias/genética , Bacterias/clasificación , ARN Bacteriano/genética , Filogenia , Heces/microbiologíaRESUMEN
Two-dimensional (2D) materials promise advances in electronic devices beyond Moore's scaling law through extended functionality, such as non-monotonic dependence of device parameters on input parameters. However, the robustness and performance of effects like negative differential resistance (NDR) and anti-ambipolar behavior have been limited in scale and robustness by relying on atomic defects and complex heterojunctions. In this paper, we introduce a novel device concept that utilizes the quantum capacitance of junctions between 2D materials and molecular layers. We realized a variable capacitance 2D molecular junction (vc2Dmj) diode through the scalable integration of graphene and single layers of stearic acid. The vc2Dmj exhibits NDR with a substantial peak-to-valley ratio even at room temperature and an active negative resistance region. The origin of this unique behavior was identified through thermoelectric measurements and ab initio calculations to be a hybridization effect between graphene and the molecular layer. The enhancement of device parameters through morphology optimization highlights the potential of our approach toward new functionalities that advance the landscape of future electronics.
RESUMEN
The concurrent seropositivity of HBsAg and anti-HBs has been described among patients with chronic hepatitis B (CHB), but its prevalence is variable. HBV S-gene mutations can affect the antigenicity of HBsAg. Patients with mutations in the 'α' determinant region of the S gene can develop severe HBV reactivation under immunosuppression. In this study at a tertiary liver center in the United States, we evaluated the frequency and virological characteristics of the HBsAg mutations among CHB patients with the presence of both HBsAg and anti-HBs. In this cohort, 45 (2.1%) of 2178 patients were identified to have a coexistence of HBsAg and anti-HBs, and 24 had available sera for the genome analysis of the Pre-S1, Pre-S2, and S regions. The frequency of mutations in the S gene was significantly higher among those older than 50 years (mean 8.5 vs. 5.4 mutations per subject, p = 0.03). Twelve patients (50%) had mutations in the 'α' determinant region of the S gene. Mutations at amino acid position 126 were most common in eight subjects. Three had a mutation at position 133. Only one patient had a mutation at position 145-the classic vaccine-escape mutation. Despite the universal HBV vaccination program, the vaccine-escape mutant is rare in our cohort of predominantly Asian patients.
Asunto(s)
Anticuerpos contra la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Hepatitis B Crónica , Mutación , Centros de Atención Terciaria , Humanos , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/inmunología , Femenino , Masculino , Persona de Mediana Edad , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Adulto , Anticuerpos contra la Hepatitis B/sangre , Anticuerpos contra la Hepatitis B/inmunología , Hepatitis B Crónica/virología , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/epidemiología , Estados Unidos/epidemiología , Evasión Inmune/genética , Anciano , Prevalencia , Adulto JovenRESUMEN
The AcPase exhibits a specific activity of 31.32 U/mg of protein with a 728-fold purification, and the yield of the enzyme is raised to 3.15 %. The Zn2+-dependent AcPase showed a purification factor of 1.34 specific activity of 14 U/mg of proteins and a total recovery of 5.14. The SDS-PAGE showed a single band corresponding to a molecular weight of 18 kDa of AcPase and 29 kDa of Zn2+-dependent AcPase. The AcPase enzyme has shown a wide range of substrate specificity for p-NPP, phenyl phosphate and FMN, while in the case of ZnAcPase α and ß-Naphthyl phosphate and p-NPP were proved to be superior substrates. The divalent metal ions like Mg2+, Mn2+, and Ca2+ increased the activity, while other substrates decreased the enzyme activity. The Km (0.14 mM) and Vmax (21 µmol/min/mg) values of AcPase were higher than those of Zn2+-AcPase (Km = 0.5 mM; Vmax = 9.7 µmol/min/mg). The Zn2+ ions activate the Zn2+-AcPase while Fe3+, Al3+, Pb2+, and Hg2+ showed inhibition on enzyme activity. Molybdate, vanadate and phosphate were found to be competitive inhibitors of AcPase with Ki values 316 µM, 185 µM, and 1.6 mM, while in Zn2+-AcPase tartrate and phosphate also showed competitive inhibition with Ki values 3 mM and 0.5 mM respectively.
Asunto(s)
Fosfatasa Ácida , Encéfalo , Pollos , Zinc , Animales , Zinc/química , Especificidad por Sustrato , Fosfatasa Ácida/metabolismo , Fosfatasa Ácida/química , Fosfatasa Ácida/aislamiento & purificación , Encéfalo/enzimología , Cinética , Concentración de Iones de Hidrógeno , Peso MolecularRESUMEN
Researchers are consistently investigating novel and distinctive methods and materials that are compatible for human life and environmental conditions This study aimed to synthesize gold nanoparticles (ALPs-AuNPs) using for the first time an alkaline protease (ALPs) derived from Phalaris minor seed extract. A series of physicochemical techniques were used to inquire the formation, size, shape and crystalline nature of ALPs-AuNPs. The nanoparticles' ability to degrade methylene blue (MB) through photocatalysis under visible light irradiation was assessed. The findings demonstrated that ALPs-AuNPs exhibited remarkable efficacy by destroying 100 % of MB within a mere 30-minute irradiation period. In addition, the ALPs-AuNPs demonstrated remarkable effectiveness in inhibiting the growth of gram-positive (S. aureus) and gram-negative (E. coli) bacteria. The inhibition zones examined against the two bacterial strains were 23(±0.3) mm and 19(±0.4); 13(±0.3) mm and 11(±0.5) mm under light and dark conditions respectively. The ALPs-AuNPs exhibited significant antioxidant activity by effectively scavenging 88 % of stable and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. As a result, the findings demonstrated that the environmentally friendly ALPs-AuNPs showed a strong potential for MB degradation and bacterial pathogen treatment.
Asunto(s)
Proteínas Bacterianas , Endopeptidasas , Oro , Nanopartículas del Metal , Humanos , Oro/química , Antibacterianos/farmacología , Nanopartículas del Metal/química , Escherichia coli , Staphylococcus aureus/metabolismo , Bacterias , Extractos Vegetales/químicaRESUMEN
The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.
Asunto(s)
Proteínas de Unión al GTP , Microcefalia , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Humanos , Drosophila melanogaster/genética , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteínas de Drosophila/genéticaRESUMEN
Date palm fiber (DPF) is normally used as fiber material in concrete. Though its addition to concrete leads to decline in durability and mechanical strengths performance. Additionally, due to its high ligno-cellulose content and organic nature, when used in concrete for high temperature application, the DPF can easily degrade causing reduction in strength and increase in weight loss. To reduce these effects, the DPF is treated using alkaline solutions. Furthermore, pozzolanic materials are normally added to the DPF composites to reduce the effects of the ligno-cellulose content. Therefore, in this study silica fume was used as supplementary cementitious material in DPF reinforced concrete (DPFRC) to reduce the negative effects of elevated temperature. Hence this study aimed at predicting the residual strengths of DPFRC enhanced/improved with silica fume subjected to elevated temperature using different models such as artificial neural network (ANN), multi-variable regression analysis (MRA) and Weibull distribution. The DPFRC is produced by adding DPF in proportions of 0%, 1%, 2% and 3% by mass. Silica fume was used as partial substitute to cement in dosages of 0%, 5%, 10% and 15% by volume. The DPFRC was then subjected to elevated temperatures between 200 and 800 °C. The weight loss, residual compressive strength and relative strengths were measured. The residual compressive strength and relative strength of the DPFRC declined with addition of DPF at any temperature. Silica fume enhanced the residual and relative strengths of the DPFRC when heated to a temperature up to 400 °C. To forecast residual compressive strength (RCS) and relative strength (RS), we provide two distinct ANN models. The first layer's inputs include DPF (%), silica fume (%), temperature (°C), and weight loss (%). The hidden layer is thought to have ten neurons. M-I is the scenario in which we use RCS as an output, whereas M-II is the scenario in which we use RS as an output. The ANN models were trained using the Levenberg-Marquardt backpropagation algorithm (LMBA). Both neural networking models exhibit a significant correlation between the predicted and actual values, as seen by their respective R = 0.99462 and R = 0.98917. The constructed neural models M-I and M-II are highly accurate at predicting RCS and RS values. MRA and Weibull distribution were used for prediction of the strengths of the DPFRC under high temperature. The developed MRA was found to have a good prediction accuracy. The residual compressive strength and relative strength followed the two-parameter Weibull distribution.
RESUMEN
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. The advent of smart technologies has significantly impacted the management of CVD, offering innovative tools and solutions to improve patient outcomes. Smart technologies have revolutionized and transformed the management of CVD, providing innovative tools to improve patient care, enhance diagnostics, and enable more personalized treatment approaches. These smart tools encompass a wide range of technologies, including wearable devices, mobile applications,3D printing technologies, artificial intelligence (AI), remote monitoring systems, and electronic health records (EHR). They offer numerous advantages, such as real-time monitoring, early detection of abnormalities, remote patient management, and data-driven decision-making. However, they also come with certain limitations and challenges, including data privacy concerns, technical issues, and the need for regulatory frameworks. In this review, despite these challenges, the future of smart technologies in CVD management looks promising, with advancements in AI algorithms, telemedicine platforms, and bio fabrication techniques opening new possibilities for personalized and efficient care. In this article, we also explore the role of smart technologies in CVD management, their advantages and disadvantages, limitations, current applications, and their smart future.
Asunto(s)
Enfermedades Cardiovasculares , Telemedicina , Dispositivos Electrónicos Vestibles , Humanos , Inteligencia Artificial , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/terapia , Telemedicina/métodos , Arritmias CardíacasRESUMEN
The growth and productivity of wheat crops depend on the availability of essential nutrients such as zinc (Zn) and potassium (K2O), which play critical roles in the plant's physiological and biochemical processes. This study aimed to investigate the synergizing effect of zinc and potassium fertilizers on uptake of both the nutrients, growth, yield, and quality of the Hashim-08 cultivar and local landrace, during the 2019-2020 growing season in Dera Ismail Khan, Pakistan. The experiment was designed using a split plot pattern in a randomized complete pattern, with main plots for the wheat cultivars and subplots for the fertilizer treatments. Results indicated that both cultivars responded positively to the fertilizer treatments, with the local landrace exhibiting maximum plant height and biological yield, and improved Hashim-08, showing increased agronomic parameters, including the number of tillers and grains and spike length. Application of Zn and K2O fertilizers significantly enhanced agronomic parameters, such as the number of grains per plant, spike length, thousand-grain weight, grain yield, harvest index, Zn uptake of grain, dry gluten content, and grain moisture content, while crude protein and grain potassium remained relatively unchanged. The soil's Zn and K content dynamics were found to vary among treatments. In conclusion, the combined application of Zn and K2O fertilizers proved beneficial in improving the growth, yield, and quality of wheat crops, with the local landrace exhibiting lower grain yield but greater Zn uptake through fertilizer application. The study's findings highlight that the local landrace showed good response to the growth and qualitative parameter when compared with the Hashim-08 cultivar. Additionally, the combined application of Zn and K showed a positive relation in terms of nutrient uptake and soil Zn and K content.
RESUMEN
The present work aims to purify and perform a preliminary analysis on a thermostable serine alkaline protease from a recently identified P. minor. The enzyme was purified 2.7-fold with a 12.4 % recovery using Sephadex G-100 chromatography, DEAE-cellulose, and ammonium sulphate precipitation. The isolated enzyme has a specific activity of 473 U/mg. The purified protease had a molecular mass of 29 kDa, and just one band was seen, which matched the band obtained using SDS-PAGE. High thermostability was demonstrated by the enzymes, which had half-lives of 31.79 and 6.0 min (a 5.3-fold improvement), enthalpies of denaturation (ΔH°) of 119.53 and 119.35 KJ mol-1, entropies of denaturation (ΔS°) of 32.96 and 41.11 J/mol·K, and free energies of denaturation (ΔG°) of 108.87 and 105.58 KJ mol-1 for the protease enzyme. Studies on the folding and stability of alkaline proteases are important since their use in biotechnology requires that they operate in settings of extreme pH and temperature. According to the kinetic and thermodynamic properties, the protease produced by P. minor is superior to that produced by other sources and previously described plants, and it might find utility in a variety of industrial fields.
Asunto(s)
Phalaris , Endopeptidasas , Temperatura , Péptido Hidrolasas/metabolismo , Semillas/metabolismo , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , CinéticaRESUMEN
Terminalia arjuna possesses significant cardioprotective, antidiabetic and antioxidant properties as these properties are described in Ayurveda. In the present study, three flavonoids were isolated through the separation and chromatographic purification of the whole plant material of T. arjuna. Spectroscopic characterization identified one of them as a new flavonoid "Terminalone A (1)" and two known flavonoids i.e., 6-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one (2) and 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one (3). The bioactivity studies showed considerable antibacterial and antioxidant (DPPH radical scavenging) potential for all the three compounds 1-3 where the compound 1 showed strong antibacterial and antioxidant activity.
Asunto(s)
Antioxidantes , Terminalia , Antioxidantes/química , Terminalia/química , Extractos Vegetales/química , Flavonoides/farmacología , Antibacterianos/farmacología , BioensayoRESUMEN
Studies on genomic secondary findings (SFs) are diverse in participants' characteristics, sequencing methods, and versions of the ACMG SF list. Based on whole genome sequencing and the version 3.1 of the ACMG SF list, we studied SFs in 863 individuals from five different regions in Pakistan. We identified 24 ACMG SFs in 23 (2.7%) of 863 individuals: 18 of 24 were related to cardiovascular disease and four to cancer syndromes. In addition to ACMG SFs, we identified 16 (1.9%) participants with pathogenic and likely pathogenic variants in genes that were not related to the participants' clinical conditions but with clear medical actionability (non-ACMG SFs): 4 of 16 were related to eye diseases, two to metabolic disorders, and two to urinary system disorders. By testing a large Pakistani cohort with whole genome sequencing, we concluded that in countries such as Pakistan, the ACMG SF list could be expanded, and our non-ACMG SF list is one example.
Asunto(s)
Pruebas Genéticas , Neoplasias , Humanos , Pakistán , Secuenciación Completa del Genoma , Neoplasias/genética , Genómica/métodosRESUMEN
A thermostable acid protease from M. indicus leaves was purified 10-fold using a 4-step protocol. We were able to isolate a purified protease fraction with a molecular weight of 50 kDa and exhibited maximal protease activity at pH 4.0 and 40 °C. Structural analysis revealed that the protease is monomeric and non-glycosylated. The addition of epoxy monocarboxylic acid, iodoacetic acid, and dimethyl sulfoxide significantly reduced protease activity while dramatically increasing the inhibition of Mn2+, Fe2+, and Cu2+. The activation energy of the hydrolysis reaction (33.33 kJ mol-1) and activation energy (Ed = 105 kJ mol-1), the standard enthalpy variation of reversible protease unfolding (2.58 kJ/mol) were calculated after activity measurements at various temperatures. Thermal inactivation of the pure enzyme followed first-order kinetics. The half-life (t1/2) of the pure enzyme at 50 °C, 60 °C, and 70 °C was 385, 231, and 154 min, respectively. Thermodynamic parameters (entropy and enthalpy) suggested that the protease was highly thermostable. This is the first report on the thermodynamic parameters of proteases produced by M. indicus. The novel protease appears to be particularly thermostable and may be important for industrial applications based on these thermodynamic properties.
Asunto(s)
Melilotus , Péptido Hidrolasas , Endopeptidasas/química , Termodinámica , Temperatura , Cinética , Concentración de Iones de Hidrógeno , Estabilidad de EnzimasRESUMEN
Since the green revolution, excessive utilization of chemical fertilizers has become prevalent due to concerns about the integrity of food production for the growing population. This indiscriminate use harms the fertility of the soil, especially in sandy soils where nutrient leaching, particularly nitrogen, results in yield losses as well as environmental and health problems. A pot experiment was carried out at Gomal University, Pakistan, in March 2022 to assess the nitrogen use efficiency, nitrogen uptake, and yield of okra. There were nine treatments with four replicates and the treatment combinations were established using a completely randomized design (CRD). Urea coated with agrotain (urease inhibitor) was applied each at 120 and 84 kg N ha-1 in 2 or 3 splits. Urea at 84 kg N ha-1 was also used in combination with Farmyard manure (FYM) and compared against the control (100% recommended urea). Obtained results showed that inhibitor-treated urea significantly increased soil concentrations of NO3-N and NH4-N over non-inhibitor-treated urea. The highest NO3-N was recorded where urea alone and urea treated with 3 L (3 L) agrotain was applied to 100%. The highest ammonical-N was recorded, where 70% urea treated with 3 L agrotain was applied. Urea, in combination with FYM, significantly increased the organic matter. Electrical conductivity in extract (ECe), and pH of the soil. The improvement in yield with inhibitor was at par with 70% and 100% urea. The highest improvement of 16% in fruit yield and 7.29% nitrogen use efficiency was obtained in the treatment receiving 120 kg N ha-1 treated with 3 L agrotain compared with non-inhibitor urea. The 2nd highest improvement of 10% in fruit yield on account of increased fruit length, stem diameter, and number of fruits, and 5.97% nitrogen use efficiency (NUE) was obtained in treatment receiving 120 kg N ha-1 in combination with FYM in comparison to control. These results suggested that the use of N inhibitor significantly increased the okra fruit yield on account of enhancing ammonical-N and increased N use efficiency.
Asunto(s)
Abelmoschus , Suelo , Humanos , Agricultura/métodos , Estiércol , Nitrógeno/análisis , Urea , Productos Agrícolas , FertilizantesRESUMEN
Acid phosphatase (ACP) is a key enzyme in the regulation of phosphate feeding in plants. In this study, a new ACP from C. oxyacantha was isolated to homogeneity and biochemically described for the first time. Specific activity (283 nkat/mg) was found after 2573 times purification fold and (17 %) yield. Using SDS-PAGE under denaturing and nondenaturing conditions, ACP was isolated as a monomer with a molecular weight of 36 kDa. LC-MS/MS confirmed the presence of this band, suggesting that C. oxycantha ACP is a monomer. The enzyme could also hydrolyze orthophosphate monoester with an optimal pH of 5.0 and a temperature of 50 °C. Thermodynamic parameters were also determined (Ea, ΔH°, ΔG°, and ΔS°). ACP activity was further studied in the presence of cysteine, DTT, SDS, EDTA, ß-ME, Triton-X-100 H2O2, and PMSF. The enzyme had a Km of 0.167 mM and an Ea of 9 kcal/mol for p-nitrophenyl phosphate. The biochemical properties of the C. oxyacantha enzyme distinguish it from other plant acid phosphatases and give a basic understanding of ACP in C. oxyacantha. The results of this investigation also advance our knowledge about the biochemical significance of ACP in C. oxyacantha. Thermal stability over a wide pH and temperature range make it more suitable for use in harsh industrial environments. However, further structural and physiological studies are anticipated to completely comprehend its important aspects in oxyacantha species.
Asunto(s)
Fosfatasa Ácida , Plantones , Fosfatasa Ácida/química , Plantones/metabolismo , Cromatografía Liquida , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Espectrometría de Masas en Tándem , Termodinámica , Temperatura , Fosfatos , Cinética , Peso Molecular , Especificidad por SustratoRESUMEN
Cardiovascular disease (CVD) is a significant noncommunicable disease associated with high long-term mortality. In addition to more effective secondary therapies, the primary prevention of CVD has developed markedly in the past several years. This study aims to investigate the evidence and impact of reducing the threshold for primary CVD risk management to 10% over 10 years with "statin" therapy. To conduct research a systematic review utilizing 5 electronic database searches was completed for studies, analyzing the clinical effect of reducing the threshold of CVD risk to 10% over 10 years for primary prevention with statin therapy. The study included six (6) trials. Statin therapy was allocated to 31,018 participants. The mean age was 61 years and the mean follow-up was 4.6 years. The mean relative reduction in total cholesterol was 19% (from an average of), low-density lipoprotein cholesterol was 28.3% (from mmol/L to mmol/L) and triglycerides were 14.8% (from mmol/L to mmol/L). High-density lipoprotein cholesterol was observed to increase by a mean of 3.3% (from mmol/L to mmol/L). When examining all-cause mortality, statin therapy was associated with a 12% relative risk reduction compared with control, where overall rates were reduced from 1.4% to 1. % There is a 30% risk reduction in general major coronary events (from to %). There is a 19% risk reduction in general major cerebrovascular events with the statin group. While there is undoubtedly statistical evidence that supports the observation of the effectiveness of statin therapy for primary prevention, there is a risk that many hundreds of patients need to be treated to avoid a single adverse clinical outcome.
Asunto(s)
Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Persona de Mediana Edad , Enfermedades Cardiovasculares/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Triglicéridos , LDL-Colesterol , Prevención PrimariaRESUMEN
Coronary artery disease (CAD) is a cardiovascular disease of the blood vessels that makes vessels, narrow and hardened and difficult to supply blood to the heart. The epidemiology of CAD disease is a common clinical syndrome of a global health priority and the burden is increasing at an alarming rate worldwide. The prevalence of CAD not only increases mortality, morbidity and worsens the patient quality of life but also puts a huge burden on the overall healthcare system. The novel risk factors include: cholesterol level, cigarette smoking, diabetics, obesity, and hypertension, respectively are the causative agents of CAD. Furthermore, the etiology of CAD is also a very complex process and several interrelated etiological factors are involved in the pathogenesis of CAD. The signs and symptoms of CAD appear like angina, heart failure, and dyspnea, myocardial infarction, and arrhythmia, respectively. The management and diagnosis of CAD include different types of medications that are used nowadays for the treatment of this disease. The highlights of the present review focused on stent technology and its useful applications. Finally, we also addressed the benefits of the stent, and its potential complications, effectiveness, indication, and contraindication that play a significant role in the recovery of CAD disease.
Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/etiología , Calidad de Vida , Stents , Factores de Riesgo , TecnologíaRESUMEN
Personal immunity frolicked an essential role in combating COVID-19 impacts on human health individually and collectively in community. Literature represented the fact about food or nutritional supplements are certified to protect against diseases; this was the reason behind public trust on certain plants and other commercial products to boost up immunity against coronavirus disease. Present study was conducted to observe the attitude of common public towards natural herbs in treating various diseases and to assess the possible potential of herbal medication in prevention of negative impacts of different variants of COVID-19 on human health at herbal clinic named "Pakistan Matab". Results concluded that most of the patients (About 80%) avoided COVID-19 testing even on experiencing major symptoms and they preferred herbal medication. Patients who died by COVID-19 were also experiencing different diseases like liver and Kideny malfunctioning; old age was another significant factor in this case. About 90% of patients were COVID symptomatic and 10% were carrying other diseases during observational study period at herbal clinic. Study represented that patients who visited clinic, have a faith on herbal medication with about 60% of patients in favor of vaccine and allopathic medication in combination with herbal treatment. Study investigated that vaccine was only for one type of variant and use of herbal medicines could be better option to boost up immunity against various COVID variants.