Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Adv ; 9(23): eadf8220, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294769

RESUMEN

Understanding the driving mechanisms behind metal-insulator transitions (MITs) is a critical step toward controlling material's properties. Since the proposal of charge order-induced MIT in magnetite Fe3O4 in 1939 by Verwey, the nature of the charge order and its role in the transition have remained elusive. Recently, a trimeron order was found in the low-temperature structure of Fe3O4; however, the expected transition entropy change in forming trimeron is greater than the observed value, which arises a reexamination of the ground state in the high-temperature phase. Here, we use electron diffraction to unveil that a nematic charge order on particular Fe sites emerges in the high-temperature structure of bulk Fe3O4 and that, upon cooling, a competitive intertwining of charge and lattice orders arouses the Verwey transition. Our findings discover an unconventional type of electronic nematicity in correlated materials and offer innovative insights into the transition mechanism in Fe3O4 via the electron-phonon coupling.


Asunto(s)
Electrones , Fonones , Frío , Electrónica , Entropía
2.
Nat Commun ; 10(1): 5289, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754109

RESUMEN

Resonant X-ray absorption, where an X-ray photon excites a core electron into an unoccupied valence state, is an essential process in many standard X-ray spectroscopies. With increasing X-ray intensity, the X-ray absorption strength is expected to become nonlinear. Here, we report the onset of such a nonlinearity in the resonant X-ray absorption of magnetic Co/Pd multilayers near the Co L[Formula: see text] edge. The nonlinearity is directly observed through the change of the absorption spectrum, which is modified in less than 40 fs within 2 eV of its threshold. This is interpreted as a redistribution of valence electrons near the Fermi level. For our magnetic sample this also involves mixing of majority and minority spins, due to sample demagnetization. Our findings reveal that nonlinear X-ray responses of materials may already occur at relatively low intensities, where the macroscopic sample is not destroyed, providing insight into ultrafast charge and spin dynamics.

3.
Rev Sci Instrum ; 87(3): 033110, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27036761

RESUMEN

X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L(3,2)-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA