Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 11: 1399392, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803804

RESUMEN

Introduction: Foot health is crucial for elephants, as pathological lesions of the feet are a leading cause of euthanasia in captive elephants, which are endangered species. Proper treatment of the feet, particularly in conditions affecting the digits and the digital cushion, requires a thorough understanding of the underlying anatomy. However, only limited literature exists due to the small population and the epidemiological foot diseases which often precludes many deceased elephants from scientific study. The aim of this study was to provide a detailed anatomical description of the blood supply to the African elephant's hindfoot. Methods: The healthy right hindlimb of a 19-year-old deceased female African savanna elephant was examined using computed tomography. Following a native sequence, 48 mL of barium-based contrast agent was injected into the caudal and cranial tibial arteries, and a subsequent scan was performed. The images were processed with 3D Slicer software. Results: The medial and lateral plantar arteries run in a symmetrical pattern. They each have a dorsal and a plantar branch, which reach the plantar skin before turning toward the axial plane of the sole to reach the digital cushion from the proximal direction. An accurate 3D model of the arteries and the bones of the foot, a set of labeled images and an animation of the blood supply have been created for ease of understanding. Discussion: In contrast to domestic ungulates, the digital cushion of the hindlimb is supplied differently from that of the forelimb. The lack of large vessels in its deeper layers indicates a slow regeneration time. This novel anatomical information may be useful in the planning of surgical interventions and in emergency medical procedures.

2.
Acta Vet Scand ; 66(1): 10, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454467

RESUMEN

BACKGROUND: The white rhinoceros (Ceratotherium simum) is close to extinction, listed as "Near Threatened", with a decreasing population on the Red List of Threatened Species of the International Union for Conservation of Nature. In at least 50% of the specimens in captivity, podiatric diseases, such as osteitis, osteomyelitis, chip fractures, enthesophytes, fractures and osteoarthritis were found during necropsy. These osteal deformations cause further pathogenic alterations in the soft tissues, particularly in the digital cushion. The literature provides good description of the skeleton of the rhino's limbs, but similar for the vascular system is non-existent. In order to recognize the symptoms in an early state and for a successful surgical treatment, precise knowledge of the vascular anatomy is essential. The purpose of our study was to provide detailed anatomical description of the blood supply of the digits and that of the digital cushion. RESULTS: The blood supply of the distal foot, digits and digital cushions were perfectly visible on the reconstructed and coloured 3D models. The deep palmar arch provided not only the blood supply to the digits but had a palmaro-distal running branch which developed a trifurcation proximal to the proximal sesamoid bones of the third digit. Two of its branches participated in the blood supply of the digits' proximal palmar surface, while the major branch supplied the digital cushion from proximal direction. CONCLUSIONS: Our findings show a unique blood supply: the main vessels of the digital cushion stem both directly from the deep palmar arch and from the digits' own arteries. The detailed description of vessels may be useful in planning surgery of the region and also in cases where the veins of the ear are not accessible.


Asunto(s)
Imagenología Tridimensional , Perisodáctilos , Animales , Imagenología Tridimensional/veterinaria , Perisodáctilos/anatomía & histología , Tomografía Computarizada por Rayos X
3.
J Chem Neuroanat ; 71: 20-5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26686291

RESUMEN

We present here a new procedure to represent the 3D distribution of neuronal cell bodies within the brain, using exclusively softwares free for research purposes. Our technique is based on digitalized photos of brain slices processed by immunohistochemical technique, and the 3D Slicer software. The technique presented enables transposition of immunohistochemical or in situ hybridization data to the stereotaxic mouse brain atlas (e.g. Paxinos, G., Franklin, K.B.J., 2001. The Mouse Brain in Stereotaxic Coordinates. second ed. Academic Press, San Diego). By exporting the finalized models into a popular 3D design software (3DS Max) arbitrary environment and motion simulation can be created to improve the visual understanding of the area studied. Application of this technique provides the possibility to store, analyze and compare data - e.g. on the hypothalamic neuropeptides - across experimental techniques and laboratories. The method is exemplified by visualizing the distribution of immunohistochemically identified melanin-concetrating hormone (MCH) containing perikarya within the mouse hypothalamus.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Hipotálamo/citología , Melaninas/metabolismo , Neuronas/citología , Hormonas Hipofisarias/metabolismo , Animales , Hipotálamo/anatomía & histología , Hipotálamo/metabolismo , Imagenología Tridimensional , Masculino , Ratones , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA