Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Exp Bot ; 75(10): 2819-2828, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38366564

RESUMEN

The net CO2 assimilation (A) response to intercellular CO2 concentration (Ci) is a fundamental measurement in photosynthesis and plant physiology research. The conventional A/Ci protocols rely on steady-state measurements and take 15-40 min per measurement, limiting data resolution or biological replication. Additionally, there are several CO2 protocols employed across the literature, without clear consensus as to the optimal protocol or systematic biases in their estimations. We compared the non-steady-state Dynamic Assimilation Technique (DAT) protocol and the three most used CO2 protocols in steady-state measurements, and tested whether different CO2 protocols lead to systematic differences in estimations of the biochemical limitations to photosynthesis. The DAT protocol reduced the measurement time by almost half without compromising estimation accuracy or precision. The monotonic protocol was the fastest steady-state method. Estimations of biochemical limitations to photosynthesis were very consistent across all CO2 protocols, with slight differences in Rubisco carboxylation limitation. The A/Ci curves were not affected by the direction of the change of CO2 concentration but rather the time spent under triose phosphate utilization (TPU)-limited conditions. Our results suggest that the maximum rate of Rubisco carboxylation (Vcmax), linear electron flow for NADPH supply (J), and TPU measured using different protocols within the literature are comparable, or at least not systematically different based on the measurement protocol used.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Dióxido de Carbono/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
2.
PLoS Biol ; 19(7): e3001361, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34297722

RESUMEN

The lysosome is an essential organelle to recycle cellular materials and maintain nutrient homeostasis, but the mechanism to down-regulate its membrane proteins is poorly understood. In this study, we performed a cycloheximide (CHX) chase assay to measure the half-lives of approximately 30 human lysosomal membrane proteins (LMPs) and identified RNF152 and LAPTM4A as short-lived membrane proteins. The degradation of both proteins is ubiquitin dependent. RNF152 is a transmembrane E3 ligase that ubiquitinates itself, whereas LAPTM4A uses its carboxyl-terminal PY motifs to recruit NEDD4-1 for ubiquitination. After ubiquitination, they are internalized into the lysosome lumen by the endosomal sorting complexes required for transport (ESCRT) machinery for degradation. Strikingly, when ectopically expressed in budding yeast, human RNF152 is still degraded by the vacuole (yeast lysosome) in an ESCRT-dependent manner. Thus, our study uncovered a conserved mechanism to down-regulate lysosome membrane proteins.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Humanos , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo
3.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34047770

RESUMEN

The lysosome (or vacuole in fungi and plants) is an essential organelle for nutrient sensing and cellular homeostasis. In response to environmental stresses such as starvation, the yeast vacuole can adjust its membrane composition by selectively internalizing membrane proteins into the lumen for degradation. Regarding the selective internalization mechanism, two competing models have been proposed. One model suggests that the ESCRT machinery is responsible for the sorting. In contrast, the ESCRT-independent intralumenal fragment (ILF) pathway proposes that the fragment generated by homotypic vacuole fusion is responsible for the sorting. Here, we applied a microfluidics-based imaging method to capture the complete degradation process in vivo. Combining live-cell imaging with a synchronized ubiquitination system, we demonstrated that ILF cargoes are not degraded through intralumenal fragments. Instead, ESCRTs function on the vacuole membrane to sort them into the lumen for degradation. We further discussed challenges in reconstituting vacuole membrane protein degradation.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Ferritinas/genética , Ferritinas/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Lisosomas/genética , Proteínas de la Membrana/genética , Técnicas Analíticas Microfluídicas , Microscopía Fluorescente , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Imagen de Lapso de Tiempo , Ubiquitinación , Vacuolas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA