Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Neuropathol Appl Neurobiol ; 50(3): e12992, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831600

RESUMEN

PURPOSE: Radiation-induced brain injury, one of the side effects of cranial radiotherapy in tumour patients, usually results in durable and serious cognitive disorders. Microglia are important innate immune-effector cells in the central nervous system. However, the interaction between microglia and neurons in radiation-induced brain injury remains uncharacterised. METHODS AND MATERIALS: We established a microglia-neuron indirect co-culture model to assess the interaction between them. Microglia exposed to radiation were examined for pyroptosis using lactate dehydrogenase (LDH) release, Annexin V/PI staining, SYTOX staining and western blot. The role of nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) was investigated in microglia exposed to radiation and in mouse radiation brain injury model through siRNA or inhibitor. Mini-mental state examination and cytokines in blood were performed in 23 patients who had experienced cranial irradiation. RESULTS: Microglia exerted neurotoxic features after radiation in the co-culture model. NLRP3 was up-regulated in microglia exposed to radiation, and then caspase-1 was activated. Thus, the gasdermin D protein was cleaved, and it triggered pyroptosis in microglia, which released inflammatory cytokines. Meanwhile, treatment with siRNA NLRP3 in vitro and NLRP3 inhibitor in vivo attenuated the damaged neuron cell and cognitive impairment, respectively. What is more, we found that the patients after radiation with higher IL-6 were observed to have a decreased MMSE score. CONCLUSIONS: These findings indicate that radiation-induced pyroptosis in microglia may promote radiation-induced brain injury via the secretion of neurotoxic cytokines. NLRP3 was evaluated as an important mediator in radiation-induced pyroptosis and a promising therapeutic target for radiation-induced brain injury.


Asunto(s)
Lesiones Encefálicas , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Piroptosis/efectos de la radiación , Piroptosis/fisiología , Microglía/metabolismo , Microglía/efectos de la radiación , Microglía/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Ratones , Humanos , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/etiología , Masculino , Neuronas/metabolismo , Neuronas/patología , Neuronas/efectos de la radiación , Técnicas de Cocultivo , Traumatismos por Radiación/patología , Traumatismos por Radiación/metabolismo , Femenino , Ratones Endogámicos C57BL , Persona de Mediana Edad
2.
Environ Pollut ; 345: 123550, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355083

RESUMEN

Due to the outbreak of COVID-19, an increased risk of airborne transmission has been experienced in buildings, particularly in confined public places. The need for ventilation as a means of infection prevention has become more pronounced given that some basic precautions (like wearing masks) are no longer mandatory. However, ventilating the space as a whole (e.g., using a unified ventilation rate) may lead to situations where there is either insufficient or excessive ventilation in localized areas, potentially resulting in localized virus accumulation or large energy consumption. It is of urgent need to investigate real-time control of ventilation systems based on local demands of the occupants to strike a balance between infection risk and energy saving. In this work, a zonal demand-controlled ventilation (ZDCV) strategy was proposed to optimize the ventilation rates in sub-zones. A camera-based occupant detection method was developed to detect occupants (with eight possible locations in sub-zones denoted as 'A' to 'H'). Linear ventilation model (LVM), dimension reduction, and artificial neural network (ANN) were integrated for rapid prediction of pollutant concentrations in sub-zones with the identified occupants and ventilation rates as inputs. Coordinated ventilation effects between sub-zones were optimized to improve infection prevention and energy savings. Results showed that rapid prediction models achieved an average prediction error of 6 ppm for CO2 concentration fields compared with the simulation under different occupant scenarios (i.e., occupant locations at ABH, ABCFH, and ABCDEFH). ZDCV largely reduced the infection risk to 2.8% while improved energy-saving efficiency by 34% compared with the system using constant ventilation rate. This work can contribute to the development of building environmental control systems in terms of pollutant removal, infection prevention, and energy sustainability.


Asunto(s)
Contaminación del Aire Interior , Contaminantes Ambientales , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Ventilación , Aire Acondicionado , Respiración
3.
Ecotoxicol Environ Saf ; 267: 115624, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37890254

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in human and animal health care to reduce persistent inflammation, pain and fever because of their anti-inflammatory, analgesic and antipyretic effects. However, the improper discharge and disposal make it becomes a major contaminant in the environment, which poses a big threat to the ecosystem. For this reason, accurate, sensitive, effective, green, and economic techniques are urgently required and have been rapidly developed in recent years. This review summarizes the advancement of sample preparation technologies for NSAIDs involving solid-phase extraction, solid-phase microextraction, liquid-phase microextraction, QuEChERS, and matrix solid-phase dispersion. Meanwhile, we overview and compare analytical technologies for NSAIDs, including liquid chromatography-based methods, gas chromatography-based methods, capillary electrophoresis, and sensors, particularly the development of liquid chromatography-based methods. Furthermore, we focus on their progress and conduct a comparison between their advantages and disadvantages.


Asunto(s)
Ecosistema , Microextracción en Fase Líquida , Animales , Humanos , Antiinflamatorios no Esteroideos/análisis , Cromatografía Liquida , Microextracción en Fase Líquida/métodos , Extracción en Fase Sólida
4.
Mol Phylogenet Evol ; 189: 107914, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37666378

RESUMEN

Phylogenetic studies in the phylogenomics era have demonstrated that reticulate evolution greatly impedes the accuracy of phylogenetic inference, and consequently can obscure taxonomic treatments. However, the systematics community lacks a broadly applicable strategy for taxonomic delimitation in groups characterized by pervasive reticulate evolution. The red-fruit genus, Stranvaesia, provides an ideal model to examine the influence of reticulation on generic circumscription, particularly where hybridization and allopolyploidy dominate the evolutionary history. In this study, we conducted phylogenomic analyses integrating data from hundreds of single-copy nuclear (SCN) genes and plastomes, and interrogated nuclear paralogs to clarify the inter/intra-generic relationship of Stranvaesia and its allies in the framework of Maleae. Analyses of phylogenomic discord and phylogenetic networks showed that allopolyploidization and introgression promoted the origin and diversification of the Stranvaesia clade, a conclusion further bolstered by cytonuclear and gene tree discordance. With a well-inferred phylogenetic backbone, we propose an updated generic delimitation of Stranvaesia and introduce a new genus, Weniomeles. This new genus is distinguished by its purple-black fruits, thorns trunk and/or branches, and a distinctive fruit core anatomy characterized by multilocular separated by a layer of sclereids and a cluster of sclereids at the top of the locules. Through this study, we highlight a broadly-applicable workflow that underscores the significance of reticulate evolution analyses in shaping taxonomic revisions from phylogenomic data.


Asunto(s)
Sueños , Rosaceae , Filogenia , Rosaceae/genética
5.
J Transl Med ; 21(1): 618, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700319

RESUMEN

BACKGROUND: Gene expression signatures can be used as prognostic biomarkers in various types of cancers. We aim to develop a gene signature for predicting the response to radiotherapy in glioma patients. METHODS: Radio-sensitive and radio-resistant glioma cell lines (M059J and M059K) were subjected to microarray analysis to screen for differentially expressed mRNAs. Additionally, we obtained 169 glioblastomas (GBM) samples and 5 normal samples from The Cancer Genome Atlas (TCGA) database, as well as 80 GBM samples and 4 normal samples from the GSE7696 set. The "DESeq2" R package was employed to identify differentially expressed genes (DEGs) between the normal brain samples and GBM samples. Combining the prognostic-related molecules identified from the TCGA, we developed a radiosensitivity-related prognostic risk signature (RRPRS) in the training set, which includes 152 patients with glioblastoma. Subsequently, we validated the reliability of the RRPRS in a validation set containing 616 patients with glioma from the TCGA database, as well as an internal validation set consisting of 31 glioblastoma patients from the Nanfang Hospital, Southern Medical University. RESULTS: Based on the microarray and LASSO COX regression analysis, we developed a nine-gene radiosensitivity-related prognostic risk signature. Patients with glioma were divided into high- or low-risk groups based on the median risk score. The Kaplan-Meier survival analysis showed that the progression-free survival (PFS) of the high-risk group was significantly shorter. The signature accurately predicted PFS as assessed by time-dependent receiver operating characteristic curve (ROC) analyses. Stratified analysis demonstrated that the signature is specific to predict the outcome of patients who were treated using radiotherapy. Univariate and multivariate Cox regression analysis revealed that the predictor was an independent predictor for the prognosis of patients with glioma. The prognostic nomograms accompanied by calibration curves displayed the 1-, 2-, and 3-year PFS and OS in patients with glioma. CONCLUSION: Our study established a new nine-gene radiosensitivity-related prognostic risk signature that can predict the prognosis of patients with glioma who received radiotherapy. The nomogram showed great potential to predict the prognosis of patients with glioma treated using radiotherapy.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/radioterapia , Pronóstico , Reproducibilidad de los Resultados , Glioma/genética , Glioma/radioterapia , Análisis por Micromatrices
6.
Environ Pollut ; 333: 122025, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37336354

RESUMEN

To prevent respiratory infections between patients and medical workers, the transmission risk of airborne pollutants in hospital wards must be mitigated. The ventilation modes, which are regarded as an important strategy to minimize the infection risk, are challenging to be systematically designed. Studies have considered the effect of ventilation openings (inlets/outlets) or infected source locations on the airflow distribution, pollutant removal, and infection risk mitigation. However, the relationship (such as relative distance) between ventilation openings and infected sources is critical because it affects the direct exhaust of exhaled pollutants, which has not been thoroughly studied. To explore pollutant removal and infection prevention in wards, different ventilation modes (with varying ventilation openings) and infected patient locations must be jointly considered. This study investigated displacement ventilation (DV), downward ventilation (DWV), and stratum ventilation (SV) with 4, 6, and 10 scenarios of ventilation openings, respectively. The optimal ventilation mode and relative distance between outlets and infected patients were analyzed based on the simulated pollutant concentration fields and the evaluated infection risk. The pollutant removal effect and infection risk mitigation of SV in the ward were largely improved by 75% and 59% compared with DV and DWV, respectively. The average infection risk was reduced below 7% when a non-dimensional relative distance (a ratio of the actual distance to the cubic root of the ward volume) was less than 0.25 between outlets and infected patient. This study can serve as a guide for the systematic ventilation system design in hospitals during the epidemic.


Asunto(s)
Filtros de Aire , Infección Hospitalaria , Contaminantes Ambientales , Humanos , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Respiración , Hospitales , Ventilación/métodos
7.
Cell Mol Biol Lett ; 28(1): 48, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268886

RESUMEN

BACKGROUND: Pulmonary fibrosis is a major category of end-stage changes in lung diseases, characterized by lung epithelial cell damage, proliferation of fibroblasts, and accumulation of extracellular matrix. Peroxiredoxin 1 (PRDX1), a member of the peroxiredoxin protein family, participates in the regulation of the levels of reactive oxygen species in cells and various other physiological activities, as well as the occurrence and development of diseases by functioning as a chaperonin. METHODS: Experimental methods including MTT assay, morphological observation of fibrosis, wound healing assay, fluorescence microscopy, flow cytometry, ELISA, western blot, transcriptome sequencing, and histopathological analysis were used in this study. RESULTS: PRDX1 knockdown increased ROS levels in lung epithelial cells and promoted epithelial-mesenchymal transition (EMT) through the PI3K/Akt and JNK/Smad signalling pathways. PRDX1 knockout significantly increased TGF-ß secretion, ROS production, and cell migration in primary lung fibroblasts. PRDX1 deficiency also increased cell proliferation, cell cycle circulation, and fibrosis progression through the PI3K/Akt and JNK/Smad signalling pathways. BLM treatment induced more severe pulmonary fibrosis in PRDX1-knockout mice, mainly through the PI3K/Akt and JNK/Smad signalling pathways. CONCLUSIONS: Our findings strongly suggest that PRDX1 is a key molecule in BLM-induced lung fibrosis progression and acts through modulating EMT and lung fibroblast proliferation; therefore, it may be a therapeutic target for the treatment of BLM-induced lung fibrosis.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Transición Epitelial-Mesenquimal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Bleomicina/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Pulmón/metabolismo , Proliferación Celular , Fibroblastos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/efectos adversos , Peroxirredoxinas/metabolismo
8.
Pathol Res Pract ; 248: 154604, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37302276

RESUMEN

Long noncoding RNAs (lncRNAs) refer to a class of RNAs greater than 200 nucleotides in length, most of which are considered unable to encode proteins, thus deemed to be junk genes formerly. But with emerging studies about lncRNAs coming out in recent years, it is much more clearly depicted that they can regulate gene expression at different levels, with various mechanisms, thus participating in diverse biological or pathological processes, including complicated tumor-associated pathways. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, the third leading cause of cancer-related mortality worldwide, which has been found to tightly associate with aberrant expression of a variety of lncRNAs regulating tumor proliferation, invasion, drug resistance, and so on, making it a potential novel tumor marker and therapeutic target. In this review, we highlight a few lncRNAs that are closely related to the occurrence and progression of HCC and try to cover their multifarious roles from different layers.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica/genética
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(4): 499-506, 2023 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-37202184

RESUMEN

OBJECTIVE: To analyze recurrence and progression patterns of primary central nervous system lymphoma (PCNSL) in patients without whole brain radiotherapy (WBRT) and assess the value of WBRT in PCNSL treatment. METHODS: This retrospective single-center study included 27 patients with PCNSL, who experienced recurrence/progression after achieving complete remission (CR), partial remission, or stable disease following initial treatments with chemotherapy but without WBRT. The patients were followed up regularly after the treatment for treatment efficacy assessment. By comparing the anatomical location of the lesions on magnetic resonance images (MRI) at the initial diagnosis and at recurrence/progression, we analyzed the patterns of relapse/progression in patients with different treatment responses and different initial status of the lesions. RESULTS: MRI data showed that in 16 (59.26%) of the 27 patients, recurrence/progression occurred in out-field area (outside the simulated clinical target volume [CTV]) but within the simulated WBRT target area in 16 (59.26%) patients, and within the CTV (in-field) in 11 (40.74%) patients. None of the patients had extracranial recurrence of the tumor. Of the 11 patients who achieved CR after the initial treatments, 9 (81.82%) had PCNSL recurrences in the out-field area but within WBRT target area; of the 13 patients with a single lesion at the initial treatment, 11 (84.62%) experienced PCNSL recurrence in the out-field area but within WBRT target area. CONCLUSIONS: Systemic therapy combined with WBRT still remains the standard treatment for PCNSL patients, especially those who achieve CR after treatment or have a single initial lesion. Future prospective studies with larger sample sizes are needed to further explore the role of low-dose WBRT in PCNSL treatment.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Linfoma , Humanos , Linfoma/radioterapia , Neoplasias del Sistema Nervioso Central/radioterapia , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/patología , Estudios Retrospectivos , Estudios Prospectivos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Terapia Combinada , Encéfalo/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Metotrexato
10.
Artículo en Inglés | MEDLINE | ID: mdl-37023792

RESUMEN

BACKGROUND: Hypoxia is an important clinical feature of glioblastoma (GBM), which regulates a variety of tumor processes and is inseparable from radiotherapy. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are strongly associated with survival outcomes in GBM patients and modulate hypoxia-induced tumor processes. Therefore, the aim of this study was to establish a hypoxia-associated lncRNAs (HALs) prognostic model to predict survival outcomes in GBM patients. METHODS: LncRNAs in GBM samples were extracted from The Cancer Genome Atlas database. Hypoxia-related genes were downloaded from the Molecular Signature Database. Co-expression analysis of differentially expressed lncRNAs and hypoxia-related genes in GBM samples was performed to determine HALs. Six optimal lncRNAs were selected for building HALs models by univariate Cox regression analysis. RESULTS: The prediction model has a good predictive effect on the prognosis of GBM patients. Meanwhile, LINC00957 among the six lncRNAs was selected and subjected to pan-cancer landscape analysis. CONCLUSION: Taken together, our findings suggest that the HALs assessment model can be used to predict the prognosis of GBM patients. In addition, LINC00957 included in the model may be a useful target to study the mechanism of cancer development and design individualized treatment strategies.

11.
Anim Nutr ; 12: 297-307, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37013080

RESUMEN

The physiological processes involved in adaptation to osmotic pressure in euryhaline crustaceans are highly energy demanding, but the effects of dietary lipids (fat) on low salinity adaptations have not been well evaluated. In the present study, a total of 120 mud crabs (Scylla paramamosain, BW = 17.87 ± 1.49 g) were fed control and high-fat (HF) diets, at both medium salinity (23‰) and low salinity (4‰) for 6 wk, and each treatment had 3 replicates with each replicate containing 10 crabs. The results indicated that a HF diet significantly mitigated the reduction in survival rate, percent weight gain and feed efficiency induced by low salinity (P < 0.05). Low salinity lowered lipogenesis and activated lipolysis resulting in lipid depletion in the hepatopancreas of mud crabs (P < 0.05). Thus, HF diets enhanced the process of lipolysis to supply more energy. In the gills, low salinity and the HF diet increased the levels of mitochondrial biogenesis markers, the activity of mitochondrial complexes, and the expression levels of genes related to energy metabolism (P < 0.05). Consequently, the positive effects of the HF diet on energy metabolism in mud crabs at low salinity promoted osmotic pressure regulation. Specifically, significantly higher haemolymph osmotic pressure and inorganic ion content, as well as higher osmotic pressure regulatory enzyme activity in gills, and gene and protein expression levels of NaK-ATPase were observed in crabs fed the HF diet at low salinity (P < 0.05). In summary, high dietary lipid levels improved energy provision to facilitate mitochondrial biogenesis, which increased ATP provision for osmotic pressure regulation of mud crabs. This study also illustrates the importance of dietary lipid nutrition supplementation for low salinity adaptations in mud crabs.

12.
Curr Med Sci ; 43(2): 284-296, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37059935

RESUMEN

OBJECTIVE: Diminished ovarian reserve (DOR) can lead to early menopause, poor fecundity, and an increased risk of disorders such as osteoporosis, cardiovascular disease, and cognitive impairment, seriously affecting the physical and mental health of women. There is still no safe and effective strategy or method to combat DOR. We have developed a novel Chinese herbal formula, Tongji anti-ovarian aging 101 (TJAOA101), to treat DOR. However, its safety and efficacy need to be further validated. METHODS: In this prospective and pre-post clinical trial, 100 eligible patients aged 18-45 diagnosed with DOR will be recruited. All participants receive TJAOA101 twice a day for 3 months. Then, comparisons before and after treatment will be analyzed, and the outcomes, including anti-mullerian hormone (AMH) and follicle-stimulating hormone (FSH) levels and the antral follicle count (AFC), the recovery rate of menopause, and the Kupperman index (KMI), will be assessed at baseline, every month during medication (the intervention period), and 1, 3 months after medication (the follow-up period). Assessments for adverse events will be performed during the intervention and follow-up periods. CONCLUSION: A multicenter, prospective study will be conducted to further confirm the safety and efficacy of TJAOA101 in treating DOR and to provide new therapeutic strategies for improving the quality of life in DOR patients.


Asunto(s)
Enfermedades del Ovario , Reserva Ovárica , Femenino , Humanos , Estudios Prospectivos , Calidad de Vida , Envejecimiento , Estudios Multicéntricos como Asunto
13.
Artículo en Inglés | MEDLINE | ID: mdl-37100272

RESUMEN

Ferroptosis is a type of regulated cell death that is dependent on iron and reactive oxygen species (ROS). Melatonin (N-acetyl-5-methoxytryptamine) reduces hypoxic-ischemic brain damage via mechanisms that involve free radical scavenging. How melatonin regulates radiation-induced ferroptosis of hippocampal neurons is yet to be elucidated. In this study, the mouse hippocampal neuronal cell line HT-22 was treated with 20µM melatonin before being stimulated with a combination of irradiation and 100 µM FeCl3. Furthermore, in vivo experiments were performed in mice treated with melatonin via intraperitoneal injection, which was followed by radiation exposure. A series of functional assays, including CCK-8, DCFH-DA kit, flow cytometry, TUNEL staining, iron estimations, and transmission electron microscopy, were performed on cells as well as hippocampal tissues. The interactions between PKM2 and NRF2 proteins were detected using a coimmunoprecipitation (Co-IP) assay. Moreover, chromatin immunoprecipitation (ChIP), a luciferase reporter assay, and an electrophoretic mobility shift assay (EMSA) were performed to explore the mechanism by which PKM2 regulates the NRF2/GPX4 signaling pathway. The spatial memory of mice was evaluated using the Morris Water Maze test. Hematoxylin-eosin and Nissl staining were performed for histological examination. The results revealed that melatonin protected HT-22 neuronal cells from radiation-induced ferroptosis, as inferred from increased cell viability, decreased ROS production, reduced number of apoptotic cells, and less cristae, higher electron density in mitochondria. In addition, melatonin induced PKM2 nuclear transference, while PKM2 inhibition reversed the effects of melatonin. Further experiments demonstrated that PKM2 bound to and induced the nuclear translocation of NRF2, which regulated GPX4 transcription. Ferroptosis enhanced by PKM2 inhibition was also converted by NRF2 overexpression. In vivo experiments indicated that melatonin alleviated radiation-induced neurological dysfunction and injury in mice. In conclusion, melatonin suppressed ferroptosis to decrease radiation-induced hippocampal neuronal injury by activating the PKM2/NRF2/GPX4 signaling pathway.


Asunto(s)
Ferroptosis , Enfermedad de Hashimoto , Melatonina , Animales , Ratones , Melatonina/farmacología , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Transducción de Señal , Neuronas , Hipocampo , Hierro
14.
Sustain Cities Soc ; 93: 104533, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36941886

RESUMEN

During the post-COVID-19 era, it is important but challenging to synchronously mitigate the infection risk and optimize the energy savings in public buildings. While, ineffective control of ventilation and purification systems can result in increased energy consumption and cross-contamination. This paper is to develop intelligent operation, maintenance, and control systems by coupling intelligent ventilation and air purification systems (negative ion generators). Optimal deployment of sensors is determined by Fuzzy C-mean (FCM), based on which CO2 concentration fields are rapidly predicted by combing the artificial neural network (ANN) and self-adaptive low-dimensional linear model (LLM). Negative oxygen ion and particle concentrations are simulated with different numbers of negative ion generators. Optimal ventilation rates and number of negative ion generators are decided. A visualization platform is established to display the effects of ventilation control, epidemic prevention, and pollutant removal. The rapid prediction error of LLM-based ANN for CO2 concentration was below 10% compared with the simulation. Fast decision reduced CO2 concentration below 1000 ppm, infection risk below 1.5%, and energy consumption by 27.4%. The largest removal efficiency was 81% when number of negative ion generators was 10. This work can promote intelligent operation, maintenance, and control systems considering infection prevention and energy sustainability.

15.
Mol Phylogenet Evol ; 181: 107727, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36754338

RESUMEN

Genome-scale data have significantly increased the number of informative characters for phylogenetic analyses and recent studies have also revealed widespread phylogenomic discordance in many plant lineages. Aralia sect. Aralia is a small plant lineage (14 spp.) of the ginseng family Araliaceae with a disjunct distribution between eastern Asia (11 spp.) and North America (3 spp.). We herein employ sequences of hundreds of nuclear loci and the complete plastomes using targeted sequence capture and genome skimming to reconstruct the phylogenetic and biogeographic history of this section. We detected substantial conflicts among nuclear genes, yet different analytical strategies generated largely congruent topologies from the nuclear data. Significant cytonuclear discordance was detected, especially concerning the positions of the three North American species. The phylogenomic results support two intercontinental disjunctions: (1) Aralia californica of western North America is sister to the eastern Asian clade consisting of A. cordata and A. continentalis in the nuclear tree, and (2) the eastern North American A. racemosa forms a clade with A. bicrenata from southwestern North America, and the North American A. racemosa - A. bicrenata clade is then sister to the eastern Asian clade consisting of A. glabra (Japan), A. fargesii (C China), and A. apioides and A. atropurpurea (the Hengduan Mountains). Aralia cordata is supported to be disjunctly distributed in Japan, Taiwan, the Ulleung island of Korea, and in Central, Southwest and South China, and Aralia continentalis is redefined with a narrower distribution in Northeast China, eastern Russia and peninsular Korea.


Asunto(s)
Aralia , Araliaceae , Filogenia , Asia Oriental , Hibridación Genética , Plantas
16.
J Integr Plant Biol ; 65(5): 1183-1203, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36772845

RESUMEN

The north temperate region was characterized by a warm climate and a rich thermophilic flora before the Eocene, but early diversifications of the temperate biome under global climate change and biome shift remain uncertain. Moreover, it is becoming clear that hybridization/introgression is an important driving force of speciation in plant diversity. Here, we applied analyses from biogeography and phylogenetic networks to account for both introgression and incomplete lineage sorting based on genomic data from the New World Vitis, a charismatic component of the temperate North American flora with known and suspected gene flow among species. Biogeographic inference and fossil evidence suggest that the grapes were widely distributed from North America to Europe during the Paleocene to the Eocene, followed by widespread extinction and survival of relicts in the tropical New World. During the climate warming in the early Miocene, a Vitis ancestor migrated northward from the refugia with subsequent diversification in the North American region. We found strong evidence for widespread incongruence and reticulate evolution among nuclear genes within both recent and ancient lineages of the New World Vitis. Furthermore, the organellar genomes showed strong conflicts with the inferred species tree from the nuclear genomes. Our phylogenomic analyses provided an important assessment of the wide occurrence of reticulate introgression in the New World Vitis, which potentially represents one of the most important mechanisms for the diversification of Vitis species in temperate North America and even the entire temperate Northern Hemisphere. The scenario we report here may be a common model of temperate diversification of flowering plants adapted to the global climate cooling and fluctuation in the Neogene.


Asunto(s)
Vitis , Filogenia , Vitis/genética , América del Norte , Núcleo Celular , Hibridación Genética
17.
Build Simul ; 16(5): 749-764, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36474607

RESUMEN

Infectious diseases (e.g., coronavirus disease 2019) dramatically impact human life, economy and social development. Exploring the low-cost and energy-saving approaches is essential in removing infectious virus particles from indoors, such as in classrooms. The application of air purification devices, such as negative ion generators (ionizers), gains popularity because of the favorable removal capacity for particles and the low operation cost. However, small and portable ionizers have potential disadvantages in the removal efficiency owing to the limited horizontal diffusion of negative ions. This study aims to investigate the layout strategy (number and location) of ionizers based on the energy-efficient natural ventilation in the classroom to improve removal efficiency (negative ions to particles) and decrease infection risk. Three infected students were considered in the classroom. The simulations of negative ion and particle concentrations were performed and validated by the experiment. Results showed that as the number of ionizers was 4 and 5, the removal performance was largely improved by combining ionizer with natural ventilation. Compared with the scenario without an ionizer, the scenario with 5 ionizers largely increased the average removal efficiency from around 20% to 85% and decreased the average infection risk by 23%. The setup with 5 ionizers placed upstream of the classroom was determined as the optimal layout strategy, particularly when the location and number of the infected students were unknown. This work can provide a guideline for applying ionizers to public buildings when natural ventilation is used. Electronic Supplementary Material ESM: the Appendix is available in the online version of this article at 10.1007/s12273-022-0959-z.

18.
Orthop Surg ; 14(12): 3251-3260, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36266783

RESUMEN

OBJECTIVE: No consensus has been reached regarding optimal implantation for a syndesmotic screw. Thus, we aimed to explore the feasibility of a reliable and static fibular incisura plane reference for ideal syndesmotic screw placement. METHODS: A retrospective review of computed tomography (CT) scans of 42 uninjured adult ankles with foot fractures were analyzed to measure the tibiofibular vertical distance (TFVD) at 2.5 cm proximal to the plafond from August 2016 to June 2017 in our hospital. The patients (20 females, 22 males) were divided into four groups according to their TFVD: 0-1, 1-2, 2-3, and 3-4 mm, and patients in each group were counted. We retrospectively assessed 41 patients (15 females, 26 males) who underwent syndesmotic screw fixation for ankle fractures from December 2015 to June 2020. We performed t-testing of two independent samples to determine the differences in the angle between the anatomic axis of the syndesmosis and screw axis (AAS) and ankle function using the American Orthopaedic Foot and Ankle Society (AOFAS) score at 3 and 6 months postoperatively between the conventional (20 patients) and K-wire marker (21 patients) groups. The correlation between the AAS and AOFAS score was analyzed. RESULTS: The TFVD measured 2.23 ± 1.01 mm at 2.5 cm proximal to the plafond, and occurred at 25% of the distance from 2 to 3 mm in 47.6% of the patients. This new technique decreased AAS deformation by 62%, from 13.01° ± 2.84° to 4.89° ± 2.43°, in the conventional group (p < 0.001). At 3 months postoperatively, the AOFAS scores of ankle function were similar in both groups, but it was significantly better in the new group than that of conventional group at the 6-month follow-up (p = 0.024). There was a moderate negative correlation between AAS and AOFAS score at 6 months postoperatively (R = -0.684). No obvious complications affecting ankle function were observed in either group postoperatively. CONCLUSIONS: Surgeons can accurately place a screw trajectory using the fibular incisura plane as a reliable intraoperative reference. A 1.6-mm K-wire placed in the syndesmosis at 2.5 cm proximal to the tibial plafond could act as a static marker of the syndesmotic plane.


Asunto(s)
Tornillos Óseos , Fijación Interna de Fracturas , Humanos , Estudios Retrospectivos
19.
J Cancer ; 13(11): 3258-3267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118528

RESUMEN

Peroxiredoxin 5 (PRDX5) is the member of Prxs family, widely reported to be involved in various types of cell death. We previously found that PRDX5 knockdown increases the susceptibility of cell death upon oxidative stress treatment. Ethyl ß-carboline-3-carboxylate (ß-CCE), an alkaloid extracted from Picrasma quassioides, has been reported to play a role in neuronal disease, but its anti-cancer potential on liver cancers remains unknown. Here, we studied the effect of PRDX5 on ethyl ß-carboline-3-carboxylate (ß-CCE)-induced apoptosis of hepatomas. High expression level of PRDX5 was deeply related with the postoperative survival of patients with liver cancer, indicating that PRDX5 may be a biomarker of live cancer processing. Moreover, PRDX5 over-expression in HepG2 cells significantly inhibited ß-CCE-induced cell apoptosis and cellular ROS levels as well as mitochondrial dysfunction. Signalling pathway analysis showed that ß-CCE could significantly up-regulate the ROS-dependent MAPK signalling, which were in turn boosts the mitochondria-dependent cell apoptosis. Moreover, PRDX5 over-expression could reverse the anti-cancer effects induced by ß-CCE in HepG2 cells. Our findings suggest that PRDX5 has a protective role on ß-CCE-induced liver cancer cell death and provides new insights for using its anti-cancer properties for liver cancer treatment.

20.
Build Environ ; 222: 109358, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35822126

RESUMEN

Subway carriages are enclosed for extended periods of time, with a high density of passengers. Providing a safe, healthy, and comfortable cabin environment is a great challenge, particularly during the COVID-19 pandemic. An increase in ventilation rate can potentially reduce infection probability, which may result in worsening environmental quality (e.g., thermal comfort) and larger energy consumption. Thus, exploring the trade-off among infection risk, environmental quality (with regard to ventilation, thermal comfort, and air quality), and energy consumption is important to optimize ventilation systems for carriages. The effect of different supply air parameters (e.g., velocity and temperature) and ventilation modes of mixing ventilation (MV) & Supply air from the Floor and Return air from the Ceiling (SFRC) was studied. The questionnaires were analyzed to explore passenger dissatisfaction with the carriage environment using a MV system. Simulations were performed to predict the velocity, temperature, and CO2 concentration fields. In addition, the comprehensive benefit was evaluated by analytic hierarchy process (AHP), based on infection probability from the revisited Wells-Riley equation, Air Diffusion Performance Index (ADPI), Predicted Mean Vote (PMV), Pollutant Removal Effectiveness (PRE) and energy consumption estimated by cooling load (Lcool). Compared with MV, the optimized SFRC provided softer draft sensation and decreased CO2 concentration by 42%. The SFRC achieved better comprehensive benefits, with an infection risk reduced to 0.4%, ADPI of 80%, PMV approaching zero, PRE up to 16, and energy efficiency increased by 30%. This work contributes to the optimal design of subway carriage ventilation systems in the post-epidemic era.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA