Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Biochem Mol Toxicol ; 38(11): e70023, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39434449

RESUMEN

Coenzyme Q10 (CoQ10) plays an important role in improving mitochondrial function and has many beneficial effects on the kidney. However, whether CoQ10 protects against diquat (DQ)-induced acute kidney injury (AKI) remains unclear. In this study, we investigated the protective effects and mechanism of action of CoQ10 against DQ-induced AKI. Institute of Cancer Research (ICR) mice were intraperitoneally injected with DQ to induce AKI. The expression levels of serum creatinine (Cr), urea, and kidney injury molecule-1 (KIM-1) increased, those of aquaporin 1 (AQP-1) decreased, and those of mitochondrial reactive oxygen species (ROS) increased with increased depolarization of mitochondrial membranes and mitochondrial rupture. In contrast, treatment with CoQ10 significantly improved DQ-induced AKI. CoQ10 treatment reduced serum Cr, urea, and KIM-1 contents, increased the AQP-1 expression, and reduced ROS contents in mice with DQ poisoning. Our results suggest that AKI caused by DQ poisoning may be related to the disruption of mitochondrial homeostasis and that CoQ10 treatment protects against AKI caused by DQ poisoning by improving mitochondrial kinetic homeostasis. Thus, CoQ10 represents a new therapeutic option for the prevention and treatment of AKI caused by DQ poisoning.


Asunto(s)
Lesión Renal Aguda , Diquat , Túbulos Renales Proximales , Mitocondrias , Ubiquinona , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Masculino , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Diquat/toxicidad , Ratones Endogámicos ICR , Especies Reactivas de Oxígeno/metabolismo
2.
Redox Biol ; 78: 103412, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39476450

RESUMEN

Statins therapy is efficacious in diminishing the risk of major cardiovascular events in diabetic patients. However, our research has uncovered a correlation between the prolonged administration of statins and an elevated risk of myocardial dysfunction in patients with type II diabetes mellitus (TIIDM). Here, we report the induction of sterol regulatory element-binding protein 1 (SREBP1) activation, associated lipid peroxidation, and the consequent diabetic myocardial dysfunction after statin treatment and explored the underlying mechanisms. In db/db mice, we observed that 40 weeks atorvastatin (5 and 10 mg/kg) and rosuvastatin (20 mg/kg) administration exacerbated diabetic myocardial dysfunction by echocardiography and cardiomyocyte contractility assay, increased myocardial inflammation and fibrosis as shown by CD68, IL-1ß, Masson's staining and Collagen1A1 immunohistochemistry (IHC) staining, increased respiratory exchange ratio (RER) by metabolic cage system assessment, exacerbated mitochondrial structural pathological changes by transmission electron microscopy (TEM) examination, increased deposition of lipid and glycogen by TEM, Oil-red and periodic acid-schiff stain (PAS) staining, which were corresponded with augmented levels of myocardial SREBP1 protein and lipid peroxidation marked by 4-hydroxynonenal (4-HNE) staining. Comparable myocardial fibrosis was also observed in KK-ay and low-dose streptozotocin (STZ)-induced TIIDM mice. Elevated SREBP1 levels were observed in the heart tissues from diabetic patients, which was positively correlated with their myocardial dysfunction. To elucidate the role of statin induced SREBP1 in lipid peroxidation and lipid deposition and related mechanism, we cultured neonatal mouse primary cardiomyocytes (NMPCs) and treated them with atorvastatin (10 µM, 24 h), tracing with [U-13C]-glucose and evaluating for SREBP1 expression and localization. We found that statin treatment elevated de novo lipogenesis (DNL) and the levels of SREBP1 cleavage-activating protein (SCAP), reduced the interaction of SCAP with insulin-induced gene 1 (Insig1), and enhance SCAP/SREBP1 translocation to the Golgi, which facilitate SREBP1 cleavage leading to its nuclear trans-localization and activation in NMPCs. Ultimately, SREBP1 knockdown or l-carnitine mitigated long-term statins therapy induced lipid peroxidation and myocardial fibrosis in low-dose STZ treated SREBP1+/- mice and l-carnitine treated db/db mice. In conclusion, we demonstrated that statin therapy may augment DNL by activating SREBP1, resulting in myocardial lipid peroxidation and lipid deposition.

3.
J Immunother Cancer ; 12(9)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39343509

RESUMEN

BACKGROUND: The development and progression of colorectal cancer (CRC) are influenced by the gut environment, much of which is modulated by microbial-derived metabolites. Although some research has been conducted on the gut microbiota, there have been limited empirical investigations on the role of the microbial-derived metabolites in CRC. METHODS: In this study, we used LC-MS and 16S rRNA sequencing to identify gut microbiome-associated fecal metabolites in patients with CRC and healthy controls. Moreover, we examined the effects of Faecalibacterium prausnitzii and tyrosol on CRC by establishing orthotopic and subcutaneous tumor mouse models. Additionally, we conducted in vitro experiments to investigate the mechanism through which tyrosol inhibits tumor cell growth. RESULTS: Our study revealed changes in the gut microbiome and metabolome that are linked to CRC. We observed that Faecalibacterium prausnitzii, a bacterium known for its multiple anti-CRC properties, is significantly more abundant in the intestines of healthy individuals than in those of individuals with CRC. In mouse tumor models, our study illustrated that Faecalibacterium prausnitzii has the ability to inhibit tumor growth by reducing inflammatory responses and enhancing tumor immunity. Additionally, research investigating the relationship between CRC-associated features and microbe-metabolite interactions revealed a correlation between Faecalibacterium prausnitzii and tyrosol, both of which are less abundant in the intestines of tumor patients. Tyrosol demonstrated antitumor activity in vivo and specifically targeted CRC cells without affecting intestinal epithelial cells in cell experiments. Moreover, tyrosol treatment effectively reduced the levels of reactive oxygen species (ROS) and inflammatory cytokines in MC38 cells. Western blot analysis further revealed that tyrosol inhibited the activation of the NF-κB and HIF-1 signaling pathways. CONCLUSIONS: This study investigated the relationship between CRC development and changes in the gut microbiota and microbial-derived metabolites. Specifically, the intestinal metabolite tyrosol exhibits antitumor effects by inhibiting HIF-1α/NF-κB signaling pathway activation, leading to a reduction in the levels of ROS and inflammatory factors. These findings indicate that manipulating the gut microbiota and its metabolites could be a promising approach for preventing and treating CRC and could provide insights for the development of anticancer drugs.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Subunidad alfa del Factor 1 Inducible por Hipoxia , FN-kappa B , Alcohol Feniletílico , Transducción de Señal , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Animales , Ratones , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Femenino , Línea Celular Tumoral
4.
Microorganisms ; 12(9)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39338453

RESUMEN

The viable but non-culturable (VBNC) state is a survival strategy for many foodborne pathogens under adverse conditions. Yersinia enterocolitica (Y. enterocolitica) as a kind of primary foodborne pathogen, and it is crucial to investigate its survival strategies and potential risks in the food chain. In this study, the effectiveness of ultraviolet (UV) irradiation and chlorine treatment in disinfecting the foodborne pathogen Y. enterocolitica was investigated. The results indicated that both UV irradiation and chlorine treatment can induce the VBNC state in Y. enterocolitica. The bacteria completely lost culturability after being treated with 25 mg/L of NaClO for 30 min and a UV dose of 100 mJ/cm². The number of culturable and viable cells were detected using plate counting and a combination of fluorescein and propidium iodide (live/dead cells). Further research found that these VBNC cells exhibited reduced intracellular Adenosine Triphosphate (ATP) levels, and increased levels of reactive oxygen species (ROS) compared to non-induced cells. Morphologically, the cells changed from a rod shape to a shorter, coccobacillary shape with small vacuoles forming at the edges, indicating structural changes. Both condition-induced VBNC-state cells were able to resuscitate in tryptic soy broth (TSB) medium supplemented with Tween 80, sodium pyruvate, and glucose. These findings contribute to a better understanding of the survival mechanisms of Y. enterocolitica in the environment and are of significant importance for the development of effective disinfection strategies.

5.
Anal Bioanal Chem ; 416(26): 5779-5789, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39212695

RESUMEN

Listeria monocytogenes (L. monocytogenes) is a prevalent food-borne pathogen that can cause listeriosis, which manifests as meningitis and other symptoms, potentially leading to fatal outcomes in severe cases. In this study, we developed an aptasensor utilizing carboxylated magnetic beads and Cas12a to detect L. monocytogenes. In the absence of L. monocytogenes, the aptamer maintains its spatial configuration, keeping the double-stranded DNA attached and preventing the release of a startup template and activation of Cas12a's trans-cleavage capability. Conversely, in the presence of L. monocytogenes, the aptamer undergoes a conformational change, releasing the double-stranded DNA to serve as a startup template, thereby activating the trans-cleavage capability of Cas12a. Consequently, as the concentration of L. monocytogenes increases, the observable brightness in a blue light gel cutter intensifies, leading to a rise in fluorescence intensity difference compared to the control. This Cas12a aptasensor demonstrates excellent sensitivity towards L. monocytogenes, with a lowest detection limit (LOD) of 57.15 CFU/mL and a linear range of 4×102 to 4×107 CFU/mL (R2=0.9858). Notably, the proposed Cas12a aptasensor exhibited outstanding selectivity and recovery in beef samples, and could be employed for precise monitoring. This Cas12a aptasensor not only provides a novel fluorescent and visual rapid detection method for L. monocytogenes but also offers simplicity, speed, and stability compared to previous detection methods. Furthermore, it is suitable for on-site detection of beef samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Sistemas CRISPR-Cas , Límite de Detección , Listeria monocytogenes , Listeria monocytogenes/aislamiento & purificación , Listeria monocytogenes/genética , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Microbiología de Alimentos/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Fluorescencia , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/química , Endodesoxirribonucleasas/química , Espectrometría de Fluorescencia/métodos
6.
Front Microbiol ; 15: 1424868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962128

RESUMEN

As a common foodborne pathogen, infection with L. monocytogenes poses a significant threat to human life and health. The objective of this study was to employ comparative genomics to unveil the biodiversity and evolutionary characteristics of L. monocytogenes strains from different regions, screening for potential target genes and mining novel target genes, thus providing significant reference value for the specific molecular detection and therapeutic targets of L. monocytogenes strains. Pan-genomic analysis revealed that L. monocytogenes from different regions have open genomes, providing a solid genetic basis for adaptation to different environments. These strains contain numerous virulence genes that contribute to their high pathogenicity. They also exhibit relatively high resistance to phosphonic acid, glycopeptide, lincosamide, and peptide antibiotics. The results of mobile genetic elements indicate that, despite being located in different geographical locations, there is a certain degree of similarity in bacterial genome evolution and adaptation to specific environmental pressures. The potential target genes identified through pan-genomics are primarily associated with the fundamental life activities and infection invasion of L. monocytogenes, including known targets such as inlB, which can be utilized for molecular detection and therapeutic purposes. After screening a large number of potential target genes, we further screened them using hub gene selection methods to mining novel target genes. The present study employed eight different hub gene screening methods, ultimately identifying ten highly connected hub genes (bglF_1, davD, menE_1, tilS, dapX, iolC, gshAB, cysG, trpA, and hisC), which play crucial roles in the pathogenesis of L. monocytogenes. The results of pan-genomic analysis showed that L. monocytogenes from different regions exhibit high similarity in bacterial genome evolution. The PCR results demonstrated the excellent specificity of the bglF_1 and davD genes for L. monocytogenes. Therefore, the bglF_1 and davD genes hold promise as specific molecular detection and therapeutic targets for L. monocytogenes strains from different regions.

7.
Eur J Nutr ; 63(6): 2185-2197, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733401

RESUMEN

PURPOSE: Ulcerative colitis (UC) is a serious health problem with increasing morbidity and prevalence worldwide. The pathogenesis of UC is complex, currently believed to be influenced by genetic factors, dysregulation of the host immune system, imbalance in the intestinal microbiota, and environmental factors. Currently, UC is typically managed using aminosalicylates, immunosuppressants, and biologics as adjunctive therapies, with the risk of relapse and development of drug resistance upon discontinuation. Therefore, further research into the pathogenesis of UC and exploration of potential treatment strategies are necessary to improve the quality of life for affected patients. According to previous studies, Lactobacillus paracasei Jlus66 (Jlus66) reduced inflammation and may help prevent or treat UC. METHODS: We used dextran sulfate sodium (DSS) to induce a mouse model of UC to assess the effect of Jlus66 on the progression of colitis. During the experiment, we monitored mouse body weight, food and water consumption, as well as rectal bleeding. Hematoxylin-eosin staining was performed to assess intestinal pathological damage. Protein imprinting and immunohistochemical methods were used to evaluate the protein levels of nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and tight junction (TJ) proteins in intestinal tissues. Fecal microbiota was analyzed based on partial 16S rRNA gene sequencing. RESULTS: Jlus66 supplementation reduced the degree of colon tissue damage, such as colon shortening, fecal occult blood, colon epithelial damage, and weight loss. Supplementation with Jlus66 reduced DSS-induced upregulation of cytokine levels such as TNF-α, IL-1ß, and IL-6 (p < 0.05). The NF-κB pathway and MAPK pathway were inhibited, and the expression of TJ proteins (ZO-1, Occludin, and Claudin-3) was upregulated. 16S rRNA sequencing of mouse cecal contents showed that Jlus66 effectively regulated the structure of the intestinal biota. CONCLUSION: In conclusion, these data indicate that Jlus66 can alter the intestinal biota and slow the progression of UC, providing new insights into potential therapeutic strategies for UC.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Mucosa Intestinal , Lacticaseibacillus paracasei , Probióticos , Animales , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/terapia , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Probióticos/farmacología , Probióticos/administración & dosificación , Lacticaseibacillus paracasei/fisiología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Inflamación , Ratones Endogámicos C57BL
8.
Nutrients ; 16(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542816

RESUMEN

The meat derived from mammals such as cows, sheep, and pigs is commonly referred to as red meat. Recent studies have shown that consuming red meat can activate the immune system, produce antibodies, and subsequently develop into tumors and cancer. This is due to the presence of a potential carcinogenic compound in red meat called N-ethanol neuraminic acid (Neu5Gc). Neu5Gc is a common sialic monosaccharide in mammals, synthesized from N-acetylneuraminic acid (Neu5Ac) in the body and typically present in most mammals. However, due to the lack of the CMAH gene encoding the cytidine 5'-monophosphate Neu5Ac hydroxylase, humans are unable to synthesize Neu5Gc. Compared to primates such as mice or chimpanzees, the specific loss of Neu5Gc expression in humans is attributed to fixed genome mutations in CMAH. Although Neu5Gc cannot be produced, it can be introduced from specific dietary sources such as red meat and milk, so it is necessary to use mice or chimpanzees that knock out the CMAH gene instead of humans as experimental models. Further research has shown that early pregnancy factor (EPF) has the ability to regulate CD4+T cell-dependent immune responses. In this study, we established a simulated human animal model using C57/BL6 mice with CMAH gene knockout and analyzed the inhibitory effect of EPF on red meat Neu5Gc-induced CMAH-/- C57/BL6 mouse antibody production and chronic inflammation development. The results showed that the intervention of EPF reduced slow weight gain and shortened colon length in mice. In addition, EPF treatment significantly reduced the levels of anti Neu5Gc antibodies in the body, as well as the inflammatory factors IL-6 and IL-1ß, TNF-α and the activity of MPO. In addition, it also alleviated damage to liver and intestinal tissues and reduced the content of CD4 cells and the expression of B cell activation molecules CD80 and CD86 in mice. In summary, EPF effectively inhibited Neu5Gc-induced antibody production, reduced inflammation levels in mice, and alleviated Neu5Gc-induced inflammation. This will provide a new re-search concept and potential approach for developing immunosuppressants to address safety issues related to long-term consumption of red meat.


Asunto(s)
Chaperonina 10 , Neoplasias , Proteínas Gestacionales , Carne Roja , Factores Supresores Inmunológicos , Femenino , Animales , Humanos , Ratones , Bovinos , Porcinos , Ovinos , Pan troglodytes , Formación de Anticuerpos , Primates , Inflamación , Mamíferos
9.
Molecules ; 29(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542909

RESUMEN

N-glycolylneuraminic acid (Neu5Gc), a sialic acid predominantly found in the non-neurohumoral fluids of hind-mouthed animals, is incapable of synthesizing Neu5Gc due to a deletion in the CMAH exon of the gene encoding human CMP-Neu5Gc hydroxylase. But consumption of animal-derived foods that contain Neu5Gc, such as red meat, can instigate an immune response in humans, as Neu5Gc is recognized as a foreign substance by the human immune system. This recognition leads to the production of anti-Neu5Gc antibodies, subsequently resulting in chronic inflammation. When Neu5Gc is consumed excessively or frequently, it may contribute to the development of heart disease and cancer. This makes Neu5Gc, an endogenous pathogenic factor derived from red meat, a new hot topic in red meat safety research. In this study, aptamers obtained by the magnetic bead SELEX technique were subjected to homology and secondary structure prediction analysis as well as affinity determination. The result indicated that the aptamer 2B.N2A9 exhibited a robust binding affinity, with an affinity constant (Ka) of 1.87 × 108 L/mol. This aptamer demonstrated optimal binding specificity within a pH range of 5.4 to 7.4. Molecular docking analysis further revealed that aptamer 2B.N2A9 formed stable binding interactions with the target Neu5Gc at specific sites, namely G-14, C-15, G-13, G-58, G-60, and C-59. An Enzyme-Linked Oligonucleotide Sorbent Assay (ELOSA) methodology was established to detect the endogenous pathogenic factor Neu5Gc present in red meat. This method demonstrated a limit of detection (LOD) of 0.71 ng/mL, along with an average recovery rate of 92.23%. The aptamer obtained in this study exhibited favorable binding properties to Neu5Gc. The assay was relatively convenient and demonstrated good sensitivity. Further investigation into the distribution of Neu5Gc in various red meats is of public health significance and scientific potential. A practical detection method should be provided to guide red meat diets and ensure the nutrition and safety of meat products.


Asunto(s)
Ácido N-Acetilneuramínico , Carne Roja , Animales , Humanos , Simulación del Acoplamiento Molecular , Inflamación , Oligonucleótidos
10.
J Transl Med ; 22(1): 308, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528541

RESUMEN

BACKGROUND: Ulcerative colitisis (UC) classified as a form of inflammatory bowel diseases (IBD) characterized by chronic, nonspecific, and recurrent symptoms with a poor prognosis. Common clinical manifestations of UC include diarrhea, fecal bleeding, and abdominal pain. Even though anti-inflammatory drugs can help alleviate symptoms of IBD, their long-term use is limited due to potential side effects. Therefore, alternative approaches for the treatment and prevention of inflammation in UC are crucial. METHODS: This study investigated the synergistic mechanism of Lactobacillus plantarum SC-5 (SC-5) and tyrosol (TY) combination (TS) in murine colitis, specifically exploring their regulatory activity on the dextran sulfate sodium (DSS)-induced inflammatory pathways (NF-κB and MAPK) and key molecular targets (tight junction protein). The effectiveness of 1 week of treatment with SC-5, TY, or TS was evaluated in a DSS-induced colitis mice model by assessing colitis morbidity and colonic mucosal injury (n = 9). To validate these findings, fecal microbiota transplantation (FMT) was performed by inoculating DSS-treated mice with the microbiota of TS-administered mice (n = 9). RESULTS: The results demonstrated that all three treatments effectively reduced colitis morbidity and protected against DSS-induced UC. The combination treatment, TS, exhibited inhibitory effects on the DSS-induced activation of mitogen-activated protein kinase (MAPK) and negatively regulated NF-κB. Furthermore, TS maintained the integrity of the tight junction (TJ) structure by regulating the expression of zona-occludin-1 (ZO-1), Occludin, and Claudin-3 (p < 0.05). Analysis of the intestinal microbiota revealed significant differences, including a decrease in Proteus and an increase in Lactobacillus, Bifidobacterium, and Akkermansia, which supported the protective effect of TS (p < 0.05). An increase in the number of Aspergillus bacteria can cause inflammation in the intestines and lead to the formation of ulcers. Bifidobacterium and Lactobacillus can regulate the micro-ecological balance of the intestinal tract, replenish normal physiological bacteria and inhibit harmful intestinal bacteria, which can alleviate the symptoms of UC. The relative abundance of Akkermansia has been shown to be negatively associated with IBD. The FMT group exhibited alleviated colitis, excellent anti-inflammatory effects, improved colonic barrier integrity, and enrichment of bacteria such as Akkermansia (p < 0.05). These results further supported the gut microbiota-dependent mechanism of TS in ameliorating colonic inflammation. CONCLUSION: In conclusion, the TS demonstrated a remission of colitis and amelioration of colonic inflammation in a gut microbiota-dependent manner. The findings suggest that TS could be a potential natural medicine for the protection of UC health. The above results suggest that TS can be used as a potential therapeutic agent for the clinical regulation of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Lactobacillus plantarum , Alcohol Feniletílico/análogos & derivados , Simbióticos , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Aceite de Oliva , FN-kappa B , Ocludina , Modelos Animales de Enfermedad , Colitis/inducido químicamente , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Colon , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL
11.
Artículo en Inglés | MEDLINE | ID: mdl-38041745

RESUMEN

Brucellosis is a zoonosis caused by Brucella, which poses a great threat to human health and animal husbandry. Pathogen surveillance is an important measure to prevent brucellosis, but the traditional method is time-consuming and not suitable for field applications. In this study, a recombinase polymerase amplification-SYBR Green I (RPAS) assay was developed for the rapid and visualized detection of Brucella in the field by targeting BCSP31 gene, a conserved marker. The method was highly specific without any cross-reactivity with other common bacteria and its detection limit was 2.14 × 104 CFU/mL or g of Brucella at 40 °C for 20 min. It obviates the need for costly instrumentation and exhibits robustness towards background interference in serum, meat, and milk samples. In summary, the RPAS assay is a rapid, visually intuitive, and user-friendly detection that is highly suitable for use in resource-limited settings. Its simplicity and ease of use enable swift on-site detection of Brucella, thereby facilitating timely implementation of preventive measures.

12.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37309037

RESUMEN

Brucella is the causative agent of brucellosis and can be transmitted to humans through aerosolized particles or contaminated food. Brucella abortus (B. abortus), Brucella melitensis (B. melitensis), and Brucella suis (B. suis) are the most virulent of the brucellae, but the traditional detection methods to distinguish them are time-consuming and require high instrumentation. To obtain epidemiological information on Brucella during livestock slaughter and food contamination, we developed a rapid and sensitive triplex recombinant polymerase amplification (triplex-RPA) assay that can simultaneously detect and differentiate between B. abortus, B. melitensis, and B. suis. Three pairs of primers (B1O7F/B1O7R, B192F/B192R, and B285F/B285R) were designed and screened for the establishment of the triplex-RPA assay. After optimization, the assay can be completed within 20 min at 39°C with good specificity and no cross-reactivity with five common pathogens. The triplex-RPA assay has a DNA sensitivity of 1-10 pg and a minimum detection limit of 2.14 × 104-2.14 × 105 CFU g-1 in B. suis spiked samples. It is a potential tool for the detection of Brucella and can effectively differentiate between B. abortus, B. melitensis, and B. suis S2, making it a useful tool for epidemiological investigations.


Asunto(s)
Brucella melitensis , Brucella suis , Brucelosis , Humanos , Brucella abortus/genética , Brucella suis/genética , Brucella melitensis/genética , Recombinasas , Brucelosis/diagnóstico , Brucelosis/veterinaria , Nucleotidiltransferasas
13.
Talanta ; 259: 124558, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37088039

RESUMEN

Listeria monocytogenes (LM) is an important foodborne pathogen that is associated with a high mortality rate. Currently, there is an urgent need for an inexpensive and rapid assay for the large-scale diagnosis and monitoring of LM. To meet these requirements, we designed a one-step, low-cost platform for the simultaneous amplification and detection of LM based on the CRISPR/Cas12a system with a micro-amplification (named Cas12a-MA). This method utilizes a combination of CRISPR/Cas12a and recombinase polymerase amplification (RPA) in the same vessel to provide a contamination-free platform for rapid nucleic acid detection with high specificity and ultra-sensitivity. In this study, we screened for three specific genes and selected the hly gene in LM as the final target. Our data showed that the number of amplification products plays a crucial role in the function of the CRISPR/Cas12a system. Our method was then further optimized for the specific detection of target DNA on 4.4 CFU/g in 25min. These assays successfully detected LM in spiked pork samples and natural meat samples (pork, beef, and mutton). All results indicate that Cas12a-MA shows great promise for foodborne pathogen detection.


Asunto(s)
Listeria monocytogenes , Ácidos Nucleicos , Bovinos , Animales , Sistemas CRISPR-Cas , Listeria monocytogenes/genética , Bioensayo , Contaminación de Medicamentos , Recombinasas , Técnicas de Amplificación de Ácido Nucleico
14.
Nat Commun ; 14(1): 1181, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864033

RESUMEN

Diabetic cardiomyopathy is a primary myocardial injury induced by diabetes with complex pathogenesis. In this study, we identify disordered cardiac retinol metabolism in type 2 diabetic male mice and patients characterized by retinol overload, all-trans retinoic acid deficiency. By supplementing type 2 diabetic male mice with retinol or all-trans retinoic acid, we demonstrate that both cardiac retinol overload and all-trans retinoic acid deficiency promote diabetic cardiomyopathy. Mechanistically, by constructing cardiomyocyte-specific conditional retinol dehydrogenase 10-knockout male mice and overexpressing retinol dehydrogenase 10 in male type 2 diabetic mice via adeno-associated virus, we verify that the reduction in cardiac retinol dehydrogenase 10 is the initiating factor for cardiac retinol metabolism disorder and results in diabetic cardiomyopathy through lipotoxicity and ferroptosis. Therefore, we suggest that the reduction of cardiac retinol dehydrogenase 10 and its mediated disorder of cardiac retinol metabolism is a new mechanism underlying diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Cardiopatías , Enfermedades Metabólicas , Masculino , Animales , Ratones , Cardiomiopatías Diabéticas/genética , Vitamina A , Diabetes Mellitus Experimental/complicaciones , Tretinoina , Ratones Noqueados , Miocitos Cardíacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética
15.
J Int Med Res ; 51(2): 3000605231152108, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36739506

RESUMEN

OBJECTIVES: To investigate associations between oral health and psychological factors (i.e., depression, anxiety, and resilience) in a group of Chinese individuals who had sought an intervention online during the COVID-19 pandemic. METHODS: For this cross-sectional study, online questionnaires were created using online survey software from set items of instruments commonly used to assess depression, anxiety, and resilience combined with an oral health survey. The study was conducted from March 13 to 16, 2020. RESULTS: 568 participants (188 men and 380 women) with a mean ± SD age of 41.7 ± 10.2 years were included in the analyses. In total, 152 (27%) participants were from Beijing, 149 (26%) from Wuhan, 110 (19%) from Shenyang, and 157 (28%) from other Chinese cities. Halitosis and bleeding gums were the most common reasons for individuals to seek an intervention. Compared with other cities, participants from Wuhan showed higher anxiety and depression and worse previous oral health. Resilience mediated the relationship between depression and oral health, but not between anxiety and oral health. CONCLUSION: We hope that the data from this study will inform clinical practitioners and demonstrate that mental health awareness and resilience training are important strategies that may mitigate the negative impact of lockdown and isolation on oral health.


Asunto(s)
COVID-19 , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , COVID-19/epidemiología , Estudios Transversales , SARS-CoV-2 , Pandemias , Salud Bucal , Control de Enfermedades Transmisibles , Ansiedad/epidemiología , Ansiedad/psicología , Brotes de Enfermedades , Encuestas y Cuestionarios , China/epidemiología , Depresión/epidemiología , Depresión/psicología
16.
Vet Microbiol ; 278: 109661, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36758262

RESUMEN

Avian Angara disease caused by fowl adenovirus serotype 4 (FAdV-4) has spread widely and brought economic losses to the poultry industry in some countries. Effective vaccines for Angara disease control are currently lacking. In this study, four capsid proteins (hexon, penton, fiber1 and fiber2) from FAdV-4 were selected, and their optimal efficient antigenic epitopes predicted by bioinformatics software were tandemly linked with the flexible linker GGGGS. Based on their amino acid sequences, the DNA sequences for the genes encoding the multiantigen epitope tandem proteins (MAETPs) FAdV4:F1, FAdV4:P, FAdV4:F2 and FAdV4:H were chemosynthesized and then ligated by T4 ligases at the cleavage sites of restriction endonucleases to construct DNAs encoding the multilinked fusion recombinant proteins (MLFRPs) used as protective antigens from avian Angara disease. These genes ligated into the expression vector pET-28a were successfully expressed using the Escherichia coli prokaryotic expression system to prepare five kinds of MLFRPs (FAdV4:F1-P-F2-H, FAdV4:F1-F2-P-H, FAdV4:F1-F2-H-P, FAdV4:F1-P-H-F2 and FAdV4:F1-H-F2-P) for use to immunize chicks. FAdV-4 was injected into MLFRP-immunized chickens, and the challenge protection rate was evaluated. FAdV4:F1-P-F2-H produced the best protection against FAdV-4, with a single immunization resulting in a 100 % protection rate, followed by FAdV4:F1-F2-P-H (83.33 %) and FAdV4:F1-F2-H-P (66.67 %). FAdV4:F1-P-H-F2 and FAdV4:F1-H-F2-P were not able to induce a good immune protection effect after one immunization. However, all of the MLFRPs were capable of protecting the host from FAdV-4 infection after two immunizations. In conclusion, these MLFRPs generated based on capsid proteins of FAdV-4 are promising candidate subunit vaccines against Angara disease.


Asunto(s)
Infecciones por Adenoviridae , Aviadenovirus , Enfermedades de las Aves , Enfermedades de las Aves de Corral , Animales , Pollos , Proteínas de la Cápside/genética , Epítopos/genética , Infecciones por Adenoviridae/prevención & control , Infecciones por Adenoviridae/veterinaria , Cápside , Serogrupo , Aviadenovirus/genética , Adenoviridae/genética , Proteínas Recombinantes
17.
Vet Sci ; 10(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36851473

RESUMEN

The gastrointestinal microbiota plays an important role in health of the host animals and the detrimental influence of pharmaceutical treatment on the fecal microbiota receives an increasing concern. The clinical use of ivermectin on chinchillas has not yet been evaluated. The purpose of our study was to assess the influence of ivermectin injection on the fecal bacterial microbiota of chinchillas. A with-in subject, before and after study was performed on 10 clinically healthy chinchillas during a 14-day period, all chinchillas received the same ivermectin treatment, and the microbiota from their fecal samples before and after administration were compared as two experimental groups. Fecal samples were collected on day 0 (before ivermectin administration) and day 14 (post ivermectin administration). Fecal bacterial microbiota was analyzed by bacterial 16S rRNA gene sequencing. No clinical abnormalities were observed post subcutaneous administration of ivermectin. No significant alteration was found in the abundance and diversity of fecal bacterial microbiota after treatment, but the dominant position of some bacterial species changed. In conclusion, ivermectin administration was associated with minimal alternations of the fecal bacterial microbiota in healthy chinchillas, and these changes had no observed negative effect on general health of chinchillas in short term.

18.
Foods ; 12(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36832972

RESUMEN

Inflammatory bowel disease (IBD) is a specific immune-associated intestinal disease. At present, the conventional treatment for patients is not ideal. Probiotics are widely used in the treatment of IBD patients due to their ability to restore the function of the intestinal mucosal barrier effectively and safely. Lactiplantibacillus plantarum subsp. plantarum is a kind of probiotic that exists in the intestines of hosts and is considered to have good probiotic properties. In this study, we evaluated the therapeutic effect of Lactiplantibacillus plantarum subsp. plantarum SC-5 (SC-5) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. We estimated the effect of SC-5 on the clinical symptoms of mice through a body weight change, colon length, and DAI score. The inhibitory effects of SC-5 on the levels of cytokine IL-1ß, IL-6, and TNF-α were determined by ELISA. The protein expression levels of NF-κB, MAPK signaling pathway, and the tight junction proteins occludin, claudin-3, and ZO-1 were verified using Western Blot and immunofluorescence. 16S rRNA was used to verify the modulatory effect of SC-5 on the structure of intestinal microbiota in DSS-induced colitis mice. The results showed that SC-5 could alleviate the clinical symptoms of DSS-induced colitis mice, and significantly reduce the expression of pro-inflammatory cytokines in the colon tissue. It also attenuated the inflammatory response by inhibiting the protein expression of NF-κB and MAPK signaling pathways. SC-5 improved the integrity of the intestinal mucosal barrier by strengthening tight junction proteins. In addition, 16S rRNA sequencing demonstrated that SC-5 was effective in restoring intestinal flora balance, as well as in increasing the relative abundance and diversity of beneficial microbiota. These results indicated that SC-5 has the potential to be developed as a new probiotic candidate that prevents or alleviates IBD.

19.
Microbiol Res ; 266: 127222, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36306681

RESUMEN

Acinetobacter baumannii is a ubiquitous opportunistic pathogen usually with low virulence. In recent years, reports of increased pathogenicity of A. baumannii in livestock due to the migratory behaviour of wildlife have attracted public health attention. Our previous study reported that an A. baumannii strain isolated from dead chicks, CCGGD201101, showed enhanced pathogenicity, but the mechanism for increased virulence is not understood. Here, to screen potential virulence factors, the proteomes of the isolated strain CCGGD201101 and the standard strain ATCC19606 of A. baumannii were compared, and the possible virulence-enhancing mechanisms were further analysed. The 50 % lethal dose (LD50) values of CCGGD201101 and standard strain ATCC19606 in ICR mice were determined to verify their bacterial toxicity. 2D fluorescence difference gel electrophoresis (2D-DIGE) combined with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) and quantitative real-time PCR (RTqPCR) were applied to screen and identify differentially expressed proteins or genes that may be related to virulence enhancement. Bioinformatics analyses based on proteinprotein interaction (PPI) networks were used to explore the function of potential virulence proteins. The pathogenicity of potential virulence factors was assessed by phylogenetic analyses and an animal infection model. The results showed that the LD50 of CCGGD201101 for mice was 1.186 × 106 CFU/mL, and the virulence was increased by 180.5-fold compared to ATCC19606. Forty-seven protein spots were significantly upregulated for the A. baumannii CCGGD201101 strain (fold change ≥1.5, p < 0.05). In total, 14 upregulated proteins were identified using proteomic analysis, and the mRNA expression levels of these proteins were nearly identical, with few exceptions. According to the PPI network and phylogenetic analyses, the I78 family peptidase inhibitor, 3-oxoacyl-ACP reductase FabG, and glycine zipper were screened as being closely related to the pathogenicity of bacteria. Furthermore, the I78 overexpression strains exhibited higher lethality in mouse infection models, which indicated that the I78 family peptidase inhibitor was a potential new virulence factor to enhance the pathogenicity of the A. baumannii CCGGD201101 strain. The present study helped us to better understand the mechanisms of virulence enhancement and provided a scientific basis for establishing an early warning system for enhanced virulence of A. baumannii from animals.


Asunto(s)
Acinetobacter baumannii , Ratones , Animales , Acinetobacter baumannii/genética , Virulencia/genética , Proteómica , Filogenia , Ratones Endogámicos ICR , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Inhibidores de Proteasas
20.
Front Psychol ; 13: 1015497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533001

RESUMEN

Objective: To investigate the prevalence of depression or anxiety in patient with multiple myeloma (MM) in China during maintenance treatment and its associated influencing factors. Methods: Patients with MM (n = 160) received maintenance therapy, and control subjects (without MM, n = 160) matched on age, sex, and BMI were recruited. Patients completed questionnaires, including the Patient Health Questionnaire-9 (PHQ-9), the Generalized Anxiety Disorder 7-item Scale (GAD-7), and the Verbal Pain Rating Scale (VPRS). Data on the Clinical characteristics, biochemical indicators of de novo MM were from the database of the Hematology Department of Beijing Chao-yang Hospital. Multiple linear regression model analysis was used to compare the differences in PHQ-9 and GAD-7 scale scores between the control group and the case group after correction for relevant variables. Multiple logistic regression models were subsequently used to analyze the correlation between the presence or absence of anxiety and depression and clinical indicators in the MM groups. Results: Depression symptoms was present in 33.33% and anxiety symptoms in 24.68% of first-episode MM in the maintenance phase of treatment, and depression symptoms in the index-corrected MM group was significantly different from that in the control group (t = 2.54, P < 0.05). Analyses of multiple logistic regressions: biochemical indicators and clinical typing were not significantly associated with anxiety and depression. Compared to the pain rating 1, the risk of depressive mood was greater in the case group with the pain rating 2 (OR = 2.38) and the pain rating ≥ 3 (OR = 4.32). The risk of anxiety was greater in the case group with the pain rating ≥ 3 than the pain rating 1 (OR = 2.89). Conclusion: Despite being in clinical remission, depressive mood problems in patients with MM remain prominent. Clinicians should enhance mood assessment and management in patients with concomitant pain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA