RESUMEN
Aerosol ammonium (NH4+), mainly produced from the reactions of ammonia (NH3) with acids in the atmosphere, has significant impacts on air pollution, radiative forcing, and human health. Understanding the source and formation mechanism of NH4+ can provide scientific insights into air quality improvements. However, the sources of NH3 in urban areas are not well understood, and few studies focus on NH3/NH4+ at different heights within the atmospheric boundary layer, which hinders a comprehensive understanding of aerosol NH4+. In this study, we perform both field observation and modeling studies (the Community Multiscale Air Quality, CMAQ) to investigate regional NH3 emission sources and vertically resolved NH4+ formation mechanisms during the winter in Beijing. Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH3 emissions, including fossil fuel sources, NH3 slip, and biomass burning, are important sources of aerosol NH4+ with more than 60% contribution occurring on heavily polluted days. In contrast, volatilization-related NH3 sources (livestock breeding, N-fertilizer application, and human waste) are dominant on clean days. Combustion-related NH3 is mostly local from Beijing, and biomass burning is likely an important NH3 source (â¼15%-20%) that was previously overlooked. More effective control strategies such as the two-product (e.g., reducing both SO2 and NH3) control policy should be considered to improve air quality.
RESUMEN
The glucose regulated protein (GRP78) is an important chaperone for various environmental and physiological stimulations. Despite the importance of GRP78 in cell survival and tumor progression, the information regarding GRP78 in silkworm Bombyx mori L. is poorly explored. We previously identified that GRP78 expression was significantly upregulated in the silkworm Nd mutation proteome database. Herein, we characterized the GRP78 protein from silkworm B. mori (hereafter, BmGRP78). The identified BmGRP78 protein encoded a 658 amino acid residues protein with a predicted molecular weight of approximately 73 kDa and comprised of two structural domains, a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). BmGRP78 was ubiquitously expressed in all examined tissues and developmental stages by quantitative RT-PCR and Western blotting analysis. The purified recombinant BmGRP78 (rBmGRP78) exhibited ATPase activity and could inhibit the aggregating thermolabile model substrates. Heat-induction or Pb/Hg-exposure strongly stimulated the upregulation expression at the translation levels of BmGRP78 in BmN cells, whereas no significant change resulting from BmNPV infection was found. Additionally, heat, Pb, Hg, and BmNPV exposure resulted in the translocation of BmGRP78 into the nucleus. These results lay a foundation for the future identification of the molecular mechanisms related to GRP78 in silkworms.
Asunto(s)
Bombyx , Chaperón BiP del Retículo Endoplásmico , Proteínas de Insectos , Animales , Bombyx/genética , Bombyx/metabolismo , Bombyx/virología , Chaperón BiP del Retículo Endoplásmico/genética , Chaperón BiP del Retículo Endoplásmico/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Plomo/toxicidad , Nucleopoliedrovirus/genéticaRESUMEN
Strict emission controls were implemented in Beijing and the surrounding regions in the North China Plain to guarantee good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. Thus, the APEC period provides a good opportunity to study the sources and formation processes of atmospheric organic aerosol. Here, fine particles (PM2.5, particulate matter with a diameter of 2.5 µm or less) collected in urban Beijing before and during the APEC period were analyzed for molecular tracers of primary and secondary organic aerosol (SOA). The primary organic carbon (POC) and secondary organic carbon (SOC) were also reconstructed using a tracer-based method. The concentrations of biogenic SOA tracers ranged from 1.09 to 34.5 ng m-3 (mean 10.3 ± 8.51 ng m-3). Monoterpene oxidation products were the largest contributor to biogenic SOA, followed by isoprene- and sesquiterpene-derived SOA. The concentrations of biogenic SOA tracers decreased by 50 % during the APEC, which was largely attributed to the implementation of emission controls by the Chinese government. The increasing mass fractions of biogenic SOA tracers from isoprene and sesquiterpene during the pollution episodes implied that their photooxidation processes contributed to the poor air quality in urban Beijing. The reconstructed biogenic and anthropogenic SOC and POC concentrations were 89.6 ± 96.8 ng m-3, 570 ± 611 ng m-3, and 2.49 ± 2.08 µg m-3, respectively, accounting for 21.9 ± 11.4 % of OC in total. Biomass-burning derived OC was the largest contributor to carbonaceous aerosol over the North China Plain. By comparing the results before and during the APEC, the emission controls effectively mitigated about 34 % of the estimated OC and were more effective at reducing SOC than POC. This suggests that the reduction of the primary organic aerosol loading is harder than SOA over the North China Plain.
Asunto(s)
Contaminantes Atmosféricos , Sesquiterpenos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Beijing , Carbono/análisis , China , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Estaciones del AñoRESUMEN
Rainwater dissolved organic matter (DOM) plays an important role in the biogeochemical cycle and evolution of organic matter in the land-atmosphere interface. To better understand their sources and molecular composition in the atmosphere, rainwater samples were collected at six different locations along the Yangtze River Basin. Based on the application of a combined approach including excitation-emission matrix (EEM) fluorescence and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), various sources (terrestrial, anthropogenic, and autochthonous sources) of rainwater DOM were revealed. Results show that the derivatives of biogenic volatile organic compounds were widely distributed and contributed to rainwater DOM along the Yangtze River Basin. In the up-river city Batang, rainwater DOM was affected by the long-range atmospheric transport due to the Indian summer monsoon. Lijiang, a city on the southeastern edge of Tibetan plateau, was related to strong local biomass burning. The industrial cities of Panzhihua and Luzhou showed large differences in organic composition due to distinct industrial types. Fuling, a district in Chongqing Municipality, was significantly contributed by aged organics from biomass burning. While rainwater DOM in Shanghai, a coastal megacity, contained a high fraction of sea spray organics. Further, more than 70% of rainwater DOM molecules are associated with 36 typical transformation mechanisms during rainwater-scavenging processes, e.g., oxidation reactions, dealkylation and decarboxylation. Our study demonstrates that local natural and anthropogenic emissions and climatic conditions strongly shaped the chemodiversity and possible precursor-product pairs of rainwater DOM along the Yangtze River Basin, which helps to better understand the biogeochemical cycles of organic matter in a large-scale watershed under the influence of human activities.
Asunto(s)
Materia Orgánica Disuelta , Ríos , Anciano , China , Fluorescencia , Humanos , Estaciones del AñoRESUMEN
Lipids are important biogenic markers to indicate the sources and chemical process of aerosol particles in the atmosphere. To better understand the influences of biogenic and anthropogenic sources on forest aerosols, total suspended particles (TSP) were collected at Mt. Changbai, Shennongjia, and Xishuangbanna that are located at different climatic zones in northeastern, central and southwestern China. n-Alkanes, fatty acids and n-alcohols were detected in the forest aerosols based on gas chromatography-mass spectrometry. The total concentrations of aliphatic compounds ranged from 15.3 ng m-3 to 566 ng m-3, and fatty acids were the most abundant (44-95%) followed by n-alkanes and n-alcohols. Low molecular weight- (LFAs) and unsaturated fatty acids (UnFAs) showed diurnal variation with higher concentrations during the nighttime in summer, indicating the potential impact from microbial activities on forest aerosols. The differences of oleic acid (C18:1) and linoleic acid (C18:2) concentrations between daytime and nighttime increased at lower latitude, indicating more intense photochemical degradation occurred at lower latitude regions. High levels of n-alkanes during daytime in summer with higher values of carbon preference indexes, combining the strong odd carbon number predominance with a maximum at C27 or C29, implied the high contributions of biogenic sources, e.g., higher plant waxes. In contrast, higher concentrations of low molecular weight n-alkanes were detected in winter forest aerosols. Levoglucosan showed a positive correlation (R2 > 0.57) with high- and low molecular weight aliphatic compounds in Mt. Changbai, but such a correlation was not observed in Shennongjia and Xishuangbanna. These results suggest the significant influence of biomass burning in Mt. Changbai, and fossil fuel combustion might be another important anthropogenic source of forest aerosols. This study adds useful information to the current understanding of forest organic aerosols at different geographical locations in China.
Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Atmósfera , China , Monitoreo del Ambiente , Bosques , Lípidos/análisis , Material Particulado/análisisRESUMEN
The complete chloroplast genome of Sparganium glomeratum was sequenced and assembled in this study. The circular genome is 160,391 bp in length and exhibits a typical quadripartite structure with a large single-copy (LSC, 87,660 bp) and small single-copy (SSC, 18,721 bp) regions, separated by a pair of inverted repeats (IRs, 27,005 bp). The cp genome contains 113 unique genes, including 79 protein-coding, 30 tRNA, and four rRNA genes. The phylogenetic analysis within the Poales showed that Sparganium is monophyletic and most closely related to Typha. Within Sparganium, S. glomeratum is sister to the clade of S. stoloniferum and S. euricarpum. The work reported here will provide useful information for the evolutionary studies on the genus of Sparganium.
RESUMEN
Low molecular weight organic compounds are ubiquitous in the atmosphere. However, knowledge on their concentrations and molecular distribution in fresh snow remains limited. Here, twelve fresh snow samples collected at eight sites in China were investigated for dicarboxylic acids and related compounds (DCRCs) including oxocarboxylic acids and α-dicarbonyls. Dissolved organic carbon (DOC) concentrations in the snow samples ranged from 0.99 to 14.6 mg C L-1. Concentrations of total dicarboxylic acids were from 225 to 1970 µg L-1 (av. 650 µg L-1), while oxoacids (28.3-173, av. 68.1 µg L-1) and dicarbonyls (12.6-69.2, av. 31.3 µg L-1) were less abundant, accounting for 4.6-8.5% (6.2%), 0.45-1.4% (0.73%), and 0.12-0.88% (0.46%) of DOC, respectively. Molecular patterns of dicarboxylic acids are characterized by a predominance of oxalic acid (C2) (95.0-1030, av. 310 µg L-1), followed by phthalic (Ph) (9.69-244, av. 69.9 µg L-1) or succinic (C4) (23.8-163, av. 63.7 µg L-1) acid. Higher concentrations of Ph in snow from Beijing and Tianjin than other urban and rural regions suggest significant emissions from vehicular exhausts and other fossil fuel combustion sources in megacities. C2 constituted 40-54% of total diacids, corresponding to 1.5-2.6% of snow DOC. The total measured DCRCs represent 5.5-10% of snow DOC, which suggests that there are large amounts of unknown organics requiring further investigations. The spatial distributions of diacids exhibited higher loadings in megacities than rural and island sites. Molecular distributions of diacids indicated that the photochemical modification was restrained under the weak solar radiation during the snow events, while anthropogenic primary sources had a more significant influence in megacities than rural areas and islands.
Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Ácidos Dicarboxílicos/análisis , Monitoreo del Ambiente , Estaciones del Año , NieveRESUMEN
Understanding how the sources of an atmospheric organic aerosol (OA) govern its burden is crucial for assessing its impact on the environment and adopting proper control strategies. In this study, the sources of OA over Beijing were assessed year-around based on the combination of two separation approaches for OA, one from chemical fractionation into the high-polarity fraction of water-soluble organic matter (HP-WSOM), humic-like substances (HULIS), and water-insoluble organic matter (WISOM), and the other from statistical grouping using positive matrix factorization (PMF) of high-resolution aerosol mass spectra. Among the three OA fractions, HP-WSOM has the highest O/C ratio (1.36), followed by HULIS (0.56) and WISOM (0.17). The major sources of different OA fractions were distinct: HP-WSOM was dominated by more oxidized oxygenated OA (96%); HULIS by cooking-like OA (40%), less oxidized oxygenated OA (27%), and biomass burning OA (21%); and WISOM by fossil fuel OA (77%). In addition, our results provide evidence that mass spectral-based PMF factors are associated with specific substructures in molecules. These structures are further discussed in the context of the FT-IR results. This study presents an overall relationship of OA groups monitored by chemical and statistical approaches for the first time, providing insights for future source apportionment studies.
Asunto(s)
Contaminantes Atmosféricos , Atmósfera , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Beijing , Monitoreo del Ambiente , Sustancias Húmicas/análisis , Material Particulado/análisis , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Two complete chloroplast genomes of Hippuris vulgaris (H. vulgaris_A and H. vulgaris_B), representing two distinct clades in China, were sequenced and assembled in this study. The circular genomes were 152,763 and 152,713 bp in length and exhibit a typical quadripartite structure of the large single-copy (LSC, 82,983/82,949 bp) and small single-copy (SSC, 18,294/18,278 bp) regions, separated by a pair of inverted repeats (IRs, both 25,743 bp). Both two cp genomes identically contain 133 genes, including 88 protein-coding genes, 37 tRNA, and eight rRNA genes. The phylogenetic analysis within Plantaginaceae demonstrated Hippuris an independent clade included in the expanded Plantaginaceae.
RESUMEN
The variations in physicochemical properties of airborne particles collected during a typical transition from haze to dust were investigated using single particle analysis with transmission and scanning electron microscopes combined with online measurement of chemical compositions of airborne particles in Beijing in February 2013. The transition was divided into three phases based on the weather condition. During haze pollution (Phase 1), gaseous and particle pollutants enhanced gradually. Results from single particle analysis showed that more coatings and more anthropogenic elements (e.g., S) appeared on the surface of fine and coarse particles, which was probably caused by efficient aqueous-phase reactions under high humidity (70%) condition. Phase 2 was dust intrusion episode. PM10 reached over 1000 µg m-3. Larger fractions of mineral particles and bare-like soot particles were observed in fine particles, while the fraction of secondary particles with coatings decreased. The proportion of black carbon in submicron particles also increased. Photochemical oxidation in gas phase likely dominated in secondary formation under high O3 concentration. After the dust episode (Phase 3), secondary formation enhanced obviously. Soot aged quickly and had a larger mode of 0.45 µm than the other phases. The size modes of airborne fine particles during Phases 1 and 3 were 0.35 µm, which were a bit larger than that during Phase 2 (0.24 µm). These results indicate that dust plumes accompanied with strong wind brought mineral particles in both fine and coarse modes and freshly emitted particles with smaller sizes, and swept away pre-presence air pollutants. This study could provide detailed information on the physicochemical properties of airborne particles during typical severe pollution processes in a short time. Such short-term change should be taken into account in order to more accurately assess the environmental, climatic and health-related effects of airborne particles.
RESUMEN
Primary biological particles are an important subset of atmospheric aerosols. They have significant impacts on climate change and public health. Tianjin is a coastal megacity in the North China Plain, which is affected by both anthropogenic activities and marine air masses. To study the abundance and dynamic change of bioaerosols in Tianjin, fluorescent biological aerosol particles (FBAPs) in Tianjin were investigated by a wideband integrated bioaerosol sensor (WIBS-4A) in terms of number concentrations and size distributions in summer (11th -25th August 2018). Meanwhile, total suspended particles were collected and analyzed for chemical compounds to identify potential sources of bioaerosols. WIBS data showed that fluorescent biological particles exhibited two peaks at sunrise (~7:00) and in the evening (~20:00), which were probably caused by the enhancement of fungal spores and bacteria. Three rain events occurred during the observation period. Precipitation enhanced the abundance of biological particles, which were likely released from vegetation leaves, resuspended from soil surfaces, and/or carried by raindrops from high altitudes. The abundance of biological particles showed no significant correlation with Na+ (r = -0.17), indicating the air masses from marine areas carried limited biological particles compared to those from continental areas.
Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Aerosoles/análisis , Bacterias , China , LluviaRESUMEN
Organic molecular composition of fine aerosols in the free troposphere is poorly understood. Here, PM2.5 (particles with aerodynamic diametersâ¯≤â¯2.5⯵m) samples were collected at the summit of Mt. Emei (3080â¯m a.s.l.) in the Southwestern China on a daytime and nighttime basis during summer 2016 (June-July). The samples were analyzed by solvent-extraction followed by derivatization and gas chromatography/mass spectrometry (GC/MS). Four classes of organic compounds, i.e. n-alkanes, fatty acids, saccharides and lignin/resin acids were measured quantitatively. Fatty acids were found to be the most abundant species with an average concentration of 401⯱â¯419â¯ngâ¯m-3 (range 25.7-1490â¯ngâ¯m-3) in the daytime, similar to the average concentration at night (399⯱â¯447â¯ngâ¯m-3, 19.6-1970â¯ngâ¯m-3). However, the concentrations of biomass burning tracers (e.g., levoglucosan), primary biological aerosol tracers (e.g., mannitol and arabitol) and low molecular weight n-alkanes derived from fossil fuel combustion in daytime samples were obviously higher than those in nighttime samples. The results suggest that valley breezes transported a large number of aerosols and their precursors from the ground surface to the summit of Mt. Emei in the daytime. Estimated with tracer-based methods, the contributions of biogenic primary sources (plant debris, fungal spore, and biomass burning) to organic carbon was in the range of 3.28-83.5% (22.0⯱â¯17.5%) in the daytime and 3.45-37.4% (10.9⯱â¯8.97%) at night. As the largest contributor, biomass burning was an important anthropogenic/natural source of aerosol particles in the free troposphere over Mt. Emei. CAPSULE: Valley/mountain breeze is an important constraint to the temporal variations in organic aerosols over Mt. Emei.
RESUMEN
Black carbon (BC) plays a vital role in atmospheric environment and climate change. Temporal variations and transport pathways of BC in Xiamen, China with the impacts of synoptic circulation were investigated in 2014 with Aethalometer. Annual mean BC concentration was 4270â¯ngâ¯m-3. BC exhibited clear diurnal (seasonal) variations, with the maximum of 6182 (4755) ng m-3 at 6:00 (in spring) and minimum of 2847 (3774) ng m-3 at 13:00 (in summer). Conditional probability function analysis indicated that high BC concentrations were associated with northwesterly winds with low wind speed. Air masses originating from the East China Sea and passing along with East China Coast had the highest BC concentrations. Potential source contribution function and concentration weighted trajectory analysis suggested that major sources for BC included the surrounding region, southwestern Fujian and eastern Guangdong to the southwest, Hubei, Hunan and Jiangxi to the northwest, the East China Sea and the South China Sea. Of the nine synoptic circulation patterns, three cyclone-related patterns were associated with low BC concentrations and small biomass burning (BCbb) contributions. Of the six anticyclone-related patterns, the three cold-high circulations around winter were associated with moderate BC concentrations and large BCbb contributions. The two cold-high patterns in spring and autumn were associated with high BC concentrations and small BCbb contributions, while the warm-high pattern was associated with moderate BC concentration and small BCbb contribution. The findings provide insights into the transport mechanisms of BC with the impacts of synoptic pattern in China.
Asunto(s)
Monitoreo del Ambiente/métodos , Estaciones del Año , Hollín/análisis , Viento , Contaminantes Atmosféricos/análisis , China , Material Particulado/análisisRESUMEN
Aerosol proteinaceous matter is comprised of a substantial fraction of bioaerosols. Its origins and interactions in the atmosphere remain poorly understood. We present observations of total proteins, combined, and free amino acids (CAAs and FAAs) in fine particulate matter (PM2.5) samples in urban Beijing before and during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. The decreases in proteins, CAAs and FAAs levels were observed after the implementation of restrictive emission controls. Significant changes were observed for the composition profiles in FAAs with the predominance of valine before the APEC and glycine during the APEC, respectively. These variations could be attributed to the influence of sources, atmospheric processes, and meteorological conditions. FAAs (especially valine and glycine) were suggested to be released by the degradation of high molecular weight proteins/polypeptides by atmospheric oxidants (i.e., ozone and free radicals) and nitrogen dioxide. Besides daytime reactions, nighttime chemistry was found to play an important role in the atmospheric formation of valine during the nights, suggesting the possible influence of NO3 radicals. Our findings provide new insights into the significant impacts of atmospheric oxidation capacity on the occurrence and transformation of aerosol proteinaceous matter which may affect its environmental, climate and health effects.
Asunto(s)
Contaminantes Atmosféricos , Aerosoles , Asia , Beijing , Monitoreo del Ambiente , Material ParticuladoRESUMEN
Sugars and n-alkanes are important organic constituents of atmospheric fine particulate matter (PM2.5). For better understanding their sources and seasonal variations in urban atmosphere, sugar compounds (anhydrosugars, sugars and sugar alcohols) and homologue n-alkanes (C18-C37) were studied in PM2.5 samples collected from September 2013 to July 2014 in Beijing, China. In general, all measured compounds showed the lowest levels in summer. Higher concentrations of sugar compounds and n-alkanes were observed in winter, probably due to elevated combustion emissions (e.g., coal, biofuel and agricultural residue burning) and stable meteorological conditions during heating season. Levoglucosan was the major sugar species in all seasons particularly in autumn and winter, highlighting the significant contribution of biomass burning to fine organic aerosols throughout the whole year especially in cold seasons. Plant waxes contributed to n-alkanes the most in late spring (54.5%) and the least in winter (11.6%); while fossil fuel combustion had the largest contribution in winter (385â¯ngâ¯m-3). The weak odd-carbon predominance of n-alkanes in wintertime aerosols also suggests fossil fuel combustion as the important source of organic aerosols in the heating season. Soil resuspension, fossil fuel combustion and biomass burning, and secondary sources are the main sources of OC in PM2.5 at Beijing. The seasonal variation in source contributions indicates that meteorological condition is a key factor in controlling PM2.5 levels. Furthermore, dust storms in spring can strongly enhance the atmospheric level of fine organic matter in Beijing.
Asunto(s)
Contaminantes Atmosféricos/análisis , Alcanos/análisis , Monitoreo del Ambiente/métodos , Combustibles Fósiles/análisis , Material Particulado/análisis , Material Particulado/química , Azúcares/análisis , Aerosoles/análisis , Atmósfera/química , Beijing , Biomasa , Carbono/análisis , China , Estaciones del Año , Suelo/químicaRESUMEN
Organic tracers are useful for investigating the sources of carbonaceous aerosols but there are still no adequate studies in China. To obtain insights into the diurnal variations, properties, and the influence of regional emission controls on carbonaceous aerosols in Beijing, day-/nighttime PM2.5 samples were collected before (Oct. 15th - Nov. 2nd) and during (Nov. 3rd - Nov. 12th) the 2014 Asia-Pacific Economic Cooperation (APEC) summit. Eleven organic compound classes were analysed using gas chromatography/mass spectrometry (GC/MS). In addition, the stable carbon isotope ratios (δ13CTC) of total carbon (TC) were detected using an elemental analyser/isotope ratio mass spectrometry (EA/irMS). Most of the organic compounds were more abundant during the night than in the daytime, and their concentrations generally decreased during the APEC. These features were associated with the strict regional emission controls and meteorological conditions. The day/night variations of δ13CTC were smaller during the APEC than those before the APEC the summit, suggesting that regionally transported aerosols are potentially played an important role in the loading of organic aerosols in Beijing before the APEC summit. The source apportionment based on the organic tracers suggested that biomass burning, plastic and microbial emissions, and fossil fuel combustion were important sources of organic aerosols in Beijing. Furthermore, a similar contribution of biomass burning to OC before and during the APEC suggests biomass burning was a persistent contributor to PM2.5 in Beijing and its surroundings.
Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Aerosoles/análisis , Contaminación del Aire/estadística & datos numéricos , Asia , Beijing , Biomasa , Carbono/análisis , Isótopos de Carbono/análisis , China , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos/análisis , Estaciones del AñoRESUMEN
Pervasive particulate pollution has been observed over large areas of the North China Plain. The high level of sulfate, a major component in fine particles, is pronounced during heavy pollution periods. Being different from source apportionments by atmospheric chemistry-transport model and receptor modeling methods, here we utilize sulfur isotopes to discern the potential emission sources. Sixty-five daily PM2.5 samples were collected at an urban site in Beijing between September 2013 and July 2014. Inorganic ions, organic/elemental carbon and stable sulfur isotopes of sulfate were analyzed. The "fingerprint" characteristics of stable sulfur isotopic composition, together with trajectory clustering modeled by HYSPLIT-4 (HYbrid Single-Particle Lagrangian Integrated Trajectory) and FLEXPART ("FLEXible PARTicle dispersion model"), was employed to identify potential aerosol sources in Beijing. Results exhibited a distinctive seasonality with sulfate, nitrate, ammonium, organic matter, and element carbon being the dominant species of PM2.5. Elevated concentrations of chloride with high organic matter were found in autumn and winter as a result of enhanced fossil fuel (mainly coal) combustion. The δ34S values of the Beijing aerosols ranged from 2.8 to 9.9 with an average of 6.0⯱â¯1.8, further indicating that the major sulfur source was direct coal burning emission. Owing to the changing patterns between oxidation pathways of S(IV) in different seasons, δ34S values varied with a winter maximum (8.2⯱â¯1.1) and a summer minimum (4.9⯱â¯1.9). The results of trajectory clustering and FLEXPART demonstrated that higher concentrations of sulfate with lower sulfur isotope ratios (4.6⯱â¯0.8) were associated with air masses from the south or east, whereas lower sulfate concentrations with heavier sulfur isotope ratios (6.7⯱â¯1.6) were observed when the air masses were mainly from the north or northwest. These results suggested that the fine aerosol pollution in Beijing, especially sulfate pollution, was mainly due to coal combustion sources from regional and local regions.
RESUMEN
To understand the origins, secondary formation and seasonality of carbonaceous aerosols in North China, we collected PM2.5 samples on day- and night-time bases in summer and winter 2016 from a typical metropolis, Tianjin, and studied their carbonaceous components and stable carbon isotope ratios of total carbon (δ13CTC). PM2.5 ranged from 21.2 µg m-3 to 74.8 µg m-3 in summer and 25.3-816 µg m-3 in winter. On average, organic carbon (OC) elemental carbon (EC) and water-soluble OC were found to be higher (3-5 times) in winter than that in summer. Secondary organic carbon that estimated by EC-tracer method was enhanced by a factor of 7 in winter compared to that in summer. δ13CTC showed a small enrichment of 13C (average -25.41 ± 0.34) in summer compared to that (-24.42 ± 0.44) in winter. Linear relations and mass ratios of selected carbonaceous components and δ13CTC imply that the carbonaceous aerosols in Tianjin were mainly derived from biomass burning emissions and photochemical processing in summer. In winter, coal combustion emissions and in situ secondary formation of organics, including water-insoluble OC (WIOC), were dominant. This study warrants a need to understand the formation mechanisms of WIOC in the urban atmosphere and thus to reconcile the atmospheric models.
RESUMEN
Source apportionment of organic carbon (OC) and elemental carbon (EC) from PM1 (particulate matter with a diameter equal to or smaller than 1 µm) in Beijing, China was carried out using radiocarbon (14C) measurement. Despite a dominant fossil-fuel contribution to EC due to large emissions from traffic and coal combustion, nonfossil sources are dominant contributors of OC in Beijing throughout the year except during the winter. Primary emission was the most important contributor to fossil-fuel derived OC for all seasons. A clear seasonal trend was found for biomass-burning contribution to OC with the highest in autumn and spring, followed by winter and summer. 14C results were also integrated with those from positive matrix factorization (PMF) of organic aerosols from aerosol mass spectrometer (AMS) measurements during winter and spring. The results suggest that the fossil-derived primary OC was dominated by coal combustion emissions whereas secondary OC was mostly from fossil-fuel emissions. Taken together with previous 14C studies in Asia, Europe and USA, a ubiquity and dominance of nonfossil contribution to OC aerosols is identified not only in rural/background/remote regions but also in urban regions, which may be explained by cooking contributions, regional transportation or local emissions of seasonal-dependent biomass burning emission. In addition, biogenic and biomass burning derived SOA may be further enhanced by unresolved atmospheric processes.
Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , Asia , Beijing , Carbono , China , Europa (Continente) , Material ParticuladoRESUMEN
Molecular distributions and stable carbon isotopic compositions (δ(13)C) of n-alkanes, fatty acids and n-alcohols were investigated in urban aerosols from Beijing, northern China to better understand the sources and long-range atmospheric transport of terrestrial organic matter during polluted and clear days in winter. n-Alkanes (C19-C36), fatty acids (C8-C32) and n-alcohols (C16-C32) detected in Beijing aerosols are characterized by the predominance of C23, C16 and C28, respectively. Carbon preference index (CPI) values of n-alkanes, the ratios of the sum of odd-numbered n-alkanes to the sum of even-numbered n-alkanes, are close to 1, indicating a heavy influence of fossil fuel combustion. Relatively higher ratios of C(18:0+16:0)/C(18:n+16:1) (fatty acids) on clear days than polluted days indicate that long-distance transport and/or photochemical aging are more significant during clear days. δ(13)C values of n-alkanes and low molecular weight fatty acids (C16:0, C18:0) ranged from -34.1 to -24.7% and -26.9 to -24.6%, respectively, which are generally heavier on polluted days than those on clear days. Such a wide range suggests that atmospheric lipids in Beijing aerosols originate from multiple sources and encounter complicated atmospheric processes during long-range transport in North China.