Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 629
Filtrar
1.
Water Res ; 259: 121851, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38851110

RESUMEN

Overuse of antibiotics has led to their existence in nitrogen-containing water. The impacts of antibiotics on bio-denitrification and the metabolic response of denitrifiers to antibiotics are unclear. We systematically analyzed the effect of ciprofloxacin (CIP) on bio-denitrification and found that 5 mg/L CIP greatly inhibited denitrification with a model denitrifier (Paracoccus denitrificans). Nitrate reduction decreased by 32.89 % and nitrous oxide emission increased by 75.53 %. The balance analysis of carbon and nitrogen metabolism during denitrification showed that CIP exposure blocked electron transfer and reduced the flow of substrate metabolism used for denitrification. Proteomics results showed that CIP exposure induced denitrifiers to use the pentose phosphate pathway more for substrate metabolism. This caused a substrate preference to generate NADPH to prevent cellular damage rather than NADH for denitrification. Notably, despite denitrifiers having antioxidant defenses, they could not completely prevent oxidative damage caused by CIP exposure. The effect of CIP exposure on denitrifiers after removal of extracellular polymeric substances (EPS) demonstrated that EPS around denitrifiers formed a barrier against CIP. Fluorescence and infrared spectroscopy revealed that the binding effect of proteins in EPS to CIP prevented damage. This study shows that denitrifiers resist antibiotic stress through different intracellular and extracellular defense strategies.


Asunto(s)
Antibacterianos , Ciprofloxacina , Desnitrificación , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Paracoccus denitrificans/metabolismo
2.
Environ Sci Technol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838251

RESUMEN

Recent discoveries indicate that several insect larvae are capable of ingesting and biodegrading plastics rapidly and symbiotically, but the ecological adaptability of the larval gut microbiome to microplastics (MPs) remains unclear. Here, we described the gut microbiome assemblage and MP biodegradation of superworms (Zophobas atratus larvae) fed MPs of five major petroleum-based polymers (polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate) and antibiotics. The shift of molecular weight distribution, characteristic peaks of C═O, and metabolic intermediates of residual polymers in egested frass proved depolymerization and biodegradation of all MPs tested in the larval intestines, even under antibiotic suppression. Superworms showed a wide adaptation to the digestion of the five polymer MPs. Antibiotic suppression negatively influenced the survival rate and plastic depolymerization patterns. The larval gut microbiomes differed from those fed MPs and antibiotics, indicating that antibiotic supplementation substantially shaped the gut microbiome composition. The larval gut microbiomes fed MPs had higher network complexity and stability than those fed MPs and antibiotics, suggesting that the ecological robustness of the gut microbiomes ensured the functional adaptability of larvae to different MPs. In addition, Mantel's test indicated that the gut microbiome assemblage was obviously related to the polymer type, the plastic degradability, antibiotic stress, and larval survival rate. This finding provided novel insights into the self-adaptation of the gut microbiome of superworms in response to different MPs.

3.
J Hazard Mater ; 474: 134762, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38823099

RESUMEN

Bioremediation of cadmium (Cd) pollution, a recognized low-carbon green environmental protection technology, is significantly enhanced by the discovery of Cd-tolerant microorganisms and their underlying tolerance mechanisms. This study presents Colpoda sp., a soil ciliate with widespread distribution, as a novel bioindicator and bioremediator for Cd contamination. With a 24 h-LC50 of 5.39 mg l-1 and an IC50 of 24.85 µg l-1 in Cd-contaminated water, Colpoda sp. achieves a maximum bioaccumulation factor (BAF) of 3.58 and a Cd removal rate of 32.98 ± 0.74 % within 96 h. The toxic responses of Colpoda sp. to Cd stress were assessed through cytological observation with transmission electron microscopy (TEM), oxidative stress kinase activity, and analysis of Cd-metallothionein (Cd-MTs) and the cd-mt gene via qRT-PCR. The integrated biomarker response index version 2 (IBRv2) and structural equation models (SEM) were utilized to analyze key factors and mechanisms, revealing that the up-regulation of Cd-MTs and cd-mt expression, rather than the oxidative stress system, is the primary determinant of Cd accumulation and tolerance in Colpoda sp. The ciliate's ability to maintain growth under 24.85 µg l-1 Cd stress and its capacity to absorb and accumulate Cd particles from water into cells are pivotal for bioremediation. A new mathematical formula and regression equations based on Colpoda sp.'s response parameters have been established to evaluate environmental Cd removal levels and design remediation schemes for contaminated sites. These findings provide a novel bioremediation and monitoring pathway for Cd remobilization and accumulation in soil and water, potentially revolutionizing the governance of Cd pollution.


Asunto(s)
Biodegradación Ambiental , Cadmio , Cilióforos , Metalotioneína , Contaminantes del Suelo , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Cilióforos/efectos de los fármacos , Cilióforos/metabolismo , Metalotioneína/metabolismo , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
4.
J Hazard Mater ; 473: 134579, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761761

RESUMEN

Ciprofloxacin (CIP) has received considerable attention in recent decades due to its high ecological risk. However, little is known about the potential response of macrophytes and microbes to varying levels of CIP exposure in constructed wetlands. Therefore, lab-scale manganese ore-based tidal flow constructed wetlands (MO-TFCWs) were operated to evaluate the responses of macrophytes and microbes to CIP over the long term. The results indicated that total nitrogen removal improved from 79.93% to 87.06% as CIP rose from 0 to 4 mg L-1. The chlorophyll content and antioxidant enzyme activities in macrophytes were enhanced under CIP exposure, but plant growth was not inhibited. Importantly, CIP exposure caused a marked evolution of the substrate microbial community, with increased microbial diversity, expanded niche breadth and enhanced cooperation among the top 50 genera, compared to the control (no CIP). Co-occurrence network also indicated that microorganisms may be more inclined to co-operate than compete. The abundance of the keystone bacterium (involved in nitrogen transformation) norank_f__A0839 increased from 0.746% to 3.405%. The null model revealed drift processes (83.33%) dominated the community assembly with no CIP and 4 mg L-1 CIP. Functional predictions indicated that microbial carbon metabolism, electron transfer and ATP metabolism activities were enhanced under prolonged CIP exposure, which may contribute to nitrogen removal. This study provides valuable insights that will help achieve stable nitrogen removal from wastewater containing antibiotic in MO-TFCWs.


Asunto(s)
Ciprofloxacina , Manganeso , Nitrógeno , Contaminantes Químicos del Agua , Humedales , Ciprofloxacina/farmacología , Ciprofloxacina/metabolismo , Manganeso/metabolismo , Nitrógeno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Antibacterianos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Microbiota/efectos de los fármacos , Plantas/metabolismo , Biodegradación Ambiental , Eliminación de Residuos Líquidos/métodos
5.
Environ Res ; 255: 119209, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38782336

RESUMEN

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process is a promising wastewater treatment technology, but the slow microbial growth rate greatly hinders its practical application. Although high-level nitrogen removal and excellent biomass accumulation have been achieved in n-DAMO granule process, the formation mechanism of n-DAMO granules remains unresolved. To elucidate the role of functional microbes in granulation, this study attempted to cultivate granules dominated by n-DAMO microorganisms and granules coupling n-DAMO with anaerobic ammonium oxidation (Anammox). After long-term operation, dense granules were developed in the two systems where both n-DAMO archaea and n-DAMO bacteria were enriched, whereas granulation did not occur in the other system dominated by n-DAMO bacteria. Extracellular polymeric substances (EPS) measurement indicated the critical role of EPS production in the granulation of n-DAMO process. Metagenomic and metatranscriptomic analyses revealed that n-DAMO archaea and Anammox bacteria were active in EPS biosynthesis, while n-DAMO bacteria were inactive. Consequently, more EPS were produced in the systems containing n-DAMO archaea and Anammox bacteria, leading to the successful development of n-DAMO granules. Furthermore, EPS biosynthesis in n-DAMO systems is potentially regulated by acyl-homoserine lactones and c-di-GMP. These findings not only provide new insights into the mechanism of granule formation in n-DAMO systems, but also hint at potential strategies for management of the granule-based n-DAMO process.


Asunto(s)
Archaea , Bacterias , Oxidación-Reducción , Archaea/metabolismo , Archaea/genética , Anaerobiosis , Bacterias/metabolismo , Bacterias/genética , Metano/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Nitritos/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Reactores Biológicos/microbiología , Aguas Residuales/microbiología
6.
J Hazard Mater ; 473: 134676, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788579

RESUMEN

Medium-chain fatty acids (MCFAs) production from waste activated sludge (WAS) by chain extension (CE) is a promising technology. However, the effects and mechanisms of CE process on the fate of antibiotic resistance genes (ARGs) remain unclear. In this study, the results showed that the removal efficiency of ARGs was 81.15 % in CE process, suggesting its efficacy in reducing environmental risks. Further, the observed decrease in mobile genetic elements (MGEs) indicated that CE process restricted the horizontal gene transfer (HGT). Complementing this, the increase in soluble organic matters and extracellular 16 S rDNA confirmed that MCFAs production caused bacterial damage. Decreased intracellular ARGs and increased extracellular ARGs further revealed that MCFAs production impaired ARGs hosts, thereby limiting the vertical gene transfer (VGT) of ARGs. Shift of microbial community combined with co-occurrence network analysis demonstrated that functional bacteria without host potential for ARGs were enriched, but potential ARGs and MGEs hosts decreased, showing the role of functional bacterial phylogeny and selection pressure of MCFAs in reducing ARGs. Finally, partial least squares path model was used to systematic verify the mechanism of ARGs removal in CE process, which was attributed to the inhibition of ARGs transmission (HGT and VGT) and shift of microbial community.


Asunto(s)
Bacterias , Farmacorresistencia Microbiana , Ácidos Grasos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Ácidos Grasos/metabolismo , Farmacorresistencia Microbiana/genética , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Microbiota/efectos de los fármacos , Transferencia de Gen Horizontal , Genes Bacterianos , Eliminación de Residuos Líquidos/métodos , Antibacterianos/farmacología
7.
Bioresour Technol ; 403: 130903, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801958

RESUMEN

Sulfate-dependent ammonium oxidation (Sulfammox) is a critical process linking nitrogen and sulfur cycles. However, the metabolic pathway of microbes driven Sulfammox is still in suspense. The study demonstrated that ammonium was not consumed with sulfate as the sole electron acceptor during long-term enrichment, probably due to inhibition from sulfide accumulation, while ammonium was removed at âˆ¼ 10 mg N/L/d with sulfate and nitrate as electron acceptors. Ammonium and sulfate were converted into nitrogen gas, sulfide, and elemental sulfur. Sulfammox was mainly performed by Candidatus Brocadia sapporoensis and Candidatus Brocadia fulgida, both of which encoded ammonium oxidation pathway and dissimilatory sulfate reduction pathway. Not sulfide-driven autotrophic denitrifiers but Candidatus Kuenenia stuttgartiensis converted nitrate to nitrite with sulfide. The results of this study reveal the specialized metabolism of Sulfammox bacteria (Candidatus Brocadia sapporoensis and Candidatus Brocadia fulgida) and provide insight into microbial relationships during the nitrogen and sulfur cycles.


Asunto(s)
Nitrógeno , Oxidación-Reducción , Sulfatos , Azufre , Azufre/metabolismo , Sulfatos/metabolismo , Nitrógeno/metabolismo , Anaerobiosis , Compuestos de Amonio/metabolismo , Nitratos/metabolismo , Sulfuros/metabolismo
8.
Water Res ; 258: 121780, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38761598

RESUMEN

Carbon disulfide (CS2) is a widely used enzyme inhibitor with cytotoxic properties, commonly employed in viscose fibers and cellophane production due to its non-polar characteristics. In industry, CS2 is often removed by aeration, however, residual CS2 may enter the wastewater treatment plants, impacting the performance of nitrifying sludge. Currently, there is a notable dearth of research on the response of nitrifying sludge to CS2-induced stress. This study delves into the alterations in the performance of nitrifying sludge under short-term and long-term CS2 stress, scrutinizes the toxic effects of CS2 on microbial cells, elucidates the succession of microbial community structure, and delineates changes in microbial metabolic products. The findings from short-term CS2 stress revealed that low concentrations of CS2 induced oxidative stress damage, which was subsequently repaired in cells. However, at concentrations of 100-200 mg/L, CS2 inhibited reactive oxygen species, superoxide dismutase, and catalase, which are associated with metabolic and antioxidant activities. The inhibition of nitrite oxidoreductase activity by high concentrations of CS2 was attributed to its impact on the enzyme's conformation. Prolonged CS2 stress resulted in an increase in the secretion of soluble extracellular polymeric substances in sludge, while CS2 was assimilated into sulfate. The analysis of sludge microbial community structure revealed a decline in the relative abundance of Rhodanobacter, which is associated with nitrification, and an increase in Sinomonas, involved in sulfur oxidation. Metabolite analysis results demonstrated that high concentrations of CS2 affect pantothenate and CoA biosynthesis, purine metabolism, and glutathione metabolism. This study elucidated the microbial response mechanism of nitrifying sludge under short-term and long-term CS2 stress. It also clarified the composition and function of microbial ecosystems, and identified key bacterial species and metabolites. It provides a basis for future research to reduce CS2 inhibition through approaches such as the addition of metal ions, the selection of efficient CS2-degrading strains, and the modification of strain metabolic pathways.


Asunto(s)
Disulfuro de Carbono , Nitrificación , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Estrés Oxidativo , Eliminación de Residuos Líquidos , Multiómica
9.
Water Res ; 258: 121789, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772320

RESUMEN

Recovery of ammonium from wastewater represents a sustainable strategy within the context of global resource depletion, environmental pollution and carbon neutralization. The present study developed an advanced self-reporting electroswitchable colorimetric platform (SECP) to realize smart ammonium recovery based on the electrically stimulated transformation of Prussian blue/Prussian white (PB/PW) redox couple. The key to SECP was the selectivity of ammonium adsorption, sensitivity of desorption to electric signals and visualability of color change during switchable adsorption/desorption transformation. The results demonstrated the electrochemical intercalation-induced selective adsorption of NH4+ (selectivity coefficient of 3-19 versus other cations) and deintercalation-induced desorption on the PB-film electrode. At applied voltage of 1.2 V for 20 min, the negatively charged PB-film electrode achieved the maximum adsorption capacity of 3.2 mmol g-1. Reversing voltage to -0.2 V for 20 min resulted in desorption efficiency as high as 99%, indicating high adsorption/desorption reversibility and cyclic stability. The Fe(III)/Fe(II) redox dynamics were responsible for PB/PW transformation during reversible intercalation/deintercalation of NH4+. Based on the blue/transparence color change of PB/PW, the quantitative relationship was established between amounts of NH4+ adsorbed and extracted RGB values by multiple linear regression (R2 = 0.986, RMSE = 0.095). Then, the SECP was created upon the unique capability of real-time monitoring and feedback of color change of electrode to realize the automatic control of NH4+ adsorption/desorption. During five cycles of tests, the adsorption process consistently peaked at an average value of 3.15±0.04 mmol g-1, while desorption reliably approached the near-zero average of 0.06±0.04 mmol g-1. The average time of duration was 19.6±1.67 min for adsorption and 18.8±1.10 min for desorption, respectively. With electroswitchability, selectivity and self-reporting functionalities, the SECP represents a paradigm shift in smart ammonium recovery from wastewater, making wastewater treatment and resource recovery more efficient, more intelligent and more sustainable.


Asunto(s)
Compuestos de Amonio , Colorimetría , Aguas Residuales , Aguas Residuales/química , Contaminantes Químicos del Agua , Adsorción , Electrodos , Oxidación-Reducción
10.
Water Res ; 257: 121700, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705068

RESUMEN

Sulfur-based denitrification is a promising technology in treatments of nitrate-contaminated wastewaters. However, due to weak bioavailability and electron-donating capability of elemental sulfur, its sulfur-to-nitrate ratio has long been low, limiting the support for dissimilatory nitrate reduction to ammonium (DNRA) process. Using a long-term sulfur-packed reactor, we demonstrate here for the first time that DNRA in sulfur-based system is not negligible, but rather contributes a remarkable 40.5 %-61.1 % of the total nitrate biotransformation for ammonium production. Through combination of kinetic experiments, electron flow analysis, 16S rRNA amplicon, and microbial network succession, we unveil a cryptic in-situ sulfur disproportionation (SDP) process which significantly facilitates DNRA via enhancing mass transfer and multiplying 86.7-210.9 % of bioavailable electrons. Metagenome assembly and single-copy gene phylogenetic analysis elucidate the abundant genomes, including uc_VadinHA17, PHOS-HE36, JALNZU01, Thiobacillus, and Rubrivivax, harboring complete genes for ammonification. Notably, a unique group of self-SDP-coupled DNRA microorganism was identified. This study unravels a previously concealed fate of DNRA, which highlights the tremendous potential for ammonium recovery and greenhouse gas mitigation. Discovery of a new coupling between nitrogen and sulfur cycles underscores great revision needs of sulfur-driven denitrification technology.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitrógeno , Azufre , Azufre/metabolismo , Compuestos de Amonio/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Desnitrificación , Reactores Biológicos , Aguas Residuales , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética
11.
Sci Total Environ ; 931: 172901, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697549

RESUMEN

High nitrate pollution in agriculture and industry poses a challenge to emerging methane oxidation coupled denitrification. In this study, an efficient nitrate removal efficiency of 100 % was achieved at an influent loading rate of 400 mg-N/L·d, accompanied by the production of short chain fatty acids (SCFAs) with a maximum value of 80.9 mg/L. Batch tests confirmed that methane was initially converted to acetate, which then served as a carbon source for denitrification. Microbial community characterization revealed the dominance of heterotrophic denitrifiers, including Simplicispira (22.8 %), Stappia (4.9 %), and the high­nitrogen-tolerant heterotrophic denitrifier Diaphorobacter (19.0 %), at the nitrate removal rate of 400 mg-N/L·d. Notably, the low abundance of methanotrophs ranging from 0.24 % to 3.75 % across all operational stages does not fully align with the abundance of pmoA genes, suggesting the presence of other functional microorganisms capable of methane oxidation and SCFAs production. These findings could facilitate highly efficient denitrification driven by methane and contributed to the development of denitrification using methane as an electron donor.


Asunto(s)
Desnitrificación , Ácidos Grasos Volátiles , Metano , Metano/metabolismo , Ácidos Grasos Volátiles/metabolismo , Eliminación de Residuos Líquidos/métodos , Interacciones Microbianas , Nitratos/metabolismo , Reactores Biológicos/microbiología
12.
Sci Total Environ ; 932: 173033, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723954

RESUMEN

Microplastics (MPs) pollution has emerged as a global concern, and wastewater treatment plants (WWTPs) are one of the potential sources of MPs in the environment. However, the effect of polyethylene MPs (PE) on nitrogen (N) removal in moving bed biofilm reactor (MBBR) remains unclear. We hypothesized that PE would affect N removal in MBBR by influencing its microbial community. In this study, we investigated the impacts of different PE concentrations (100, 500, and 1000 µg/L) on N removal, enzyme activities, and microbial community in MBBR. Folin-phenol and anthrone colorimetric methods, oxidative stress and enzyme activity tests, and high-throughput sequencing combined with bioinformation analysis were used to decipher the potential mechanisms. The results demonstrated that 1000 µg/L PE had the greatest effect on NH4+-N and TN removal, with a decrease of 33.5 % and 35.2 %, and nitrifying and denitrifying enzyme activities were restrained by 29.5-39.6 % and 24.6-47.4 %. Polysaccharide and protein contents were enhanced by PE, except for 1000 µg/L PE, which decreased protein content by 65.4 mg/g VSS. The positive links of species interactions under 1000 µg/L PE exposure was 52.07 %, higher than under 500 µg/L (51.05 %) and 100 µg/L PE (50.35 %). Relative abundance of some metabolism pathways like carbohydrate metabolism and energy metabolism were restrained by 0.07-0.11 % and 0.27-0.4 %. Moreover, the total abundance of nitrification and denitrification genes both decreased under PE exposure. Overall, PE reduced N removal by affecting microbial community structure and species interactions, inhibiting some key metabolic pathways, and suppressing key enzyme activity and functional gene abundance. This paper provides new insights into assessing the risk of MPs to WWTPs, contributing to ensuring the health of aquatic ecosystems.


Asunto(s)
Biopelículas , Reactores Biológicos , Microbiota , Nitrógeno , Polietileno , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Nitrógeno/metabolismo , Reactores Biológicos/microbiología , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Microbiota/efectos de los fármacos , Microplásticos , Aguas Residuales/química
13.
Environ Res ; 252(Pt 1): 118834, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38565414

RESUMEN

Iron-doped biochar has been widely used as an adsorbent to remove contaminants due to the high adsorption performance, but it still suffers from complicated preparation methods, unstable iron loading, unsatisfactory specific surface area, and uneven distribution of active sites. Here, a novel magnetic porous biochar (FeCS800) with nanostructure on surface was synthesized by one-pot pyrolysis method of corn straw with K2FeO4, and used in orange G (OG) and tetracycline (TC) adsorption. FeCS800 exhibited outstanding adsorption capacities for OG and TC after K2FeO4 activation and the adsorption data were fitted satisfactorily to Langmuir isotherm and Pseudo-second-order kinetic model. The maximum adsorption capacities of FeCS800 for OG and TC were around 303.03 mg/g and 322.58 mg/g, respectively, at 25 °C and pH 7.0, which were 16.27 and 24.61 times higher than that before modification. Thermodynamic studies showed that the adsorption of OG/TC by FeCS800 were thermodynamically favorable and highly spontaneous. And the adsorption capacity of OG and TC by FeCS800 remained 77% and 81% after 5 cycles, respectively, indicating that FeCS800 had good stability. The outstanding adsorption properties and remarkable reusability of FeCS800 show its great potential to be an economic and environmental adsorbent in contaminants removal.


Asunto(s)
Carbón Orgánico , Tetraciclina , Contaminantes Químicos del Agua , Adsorción , Tetraciclina/química , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Porosidad , Compuestos Azo/química , Bencenosulfonatos/química , Cinética , Termodinámica
14.
Environ Sci Technol ; 58(16): 6998-7009, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602777

RESUMEN

Phosphorus (P) is the key in maintaining food security and ecosystem functions. Population growth and economic development have increased the demand for phosphate rocks. China has gradually developed from zero phosphate mining to the world's leading P miner, fertilizer, and agricultural producer since 1949. China released policies, such as designating phosphate rock as a strategic resource, promoting eco-agricultural policies, and encouraging the use of solid wastes produced in mining and the phosphorus chemical industry as construction materials. However, methodological and data gaps remain in the mapping of the long-term effects of policies on P resource efficiency. Here, P resource efficiency can be represented by the potential of the P cycle to concentrate or dilute P as assessed by substance flow analysis (SFA) complemented by statistical entropy analysis (SEA). P-flow quantification over the past 70 years in China revealed that both resource utilization and waste generation peaked around 2015, with 20 and 11 Mt of mined and wasted P, respectively. Additionally, rapidly increasing aquaculture wastewater has exacerbated pollution. The resource efficiency of the Chinese P cycle showed a U-shaped change with an overall improvement of 22.7%, except for a temporary trough in 1975. The driving force behind the efficiency decline was the roaring phosphate fertilizer industry, as confirmed by the sharp increase in P flows for both resource utilization and waste generation from the mid-1960s to 1975. The positive driving forces behind the 30.7% efficiency increase from 1975 to 2018 were the implementation of the resource conservation policy, downstream pollution control, and, especially, the circular agro-food system strategy. However, not all current management practices improve the P resource efficiency. Mixing P industry waste with construction materials and the development of aquaculture to complement offshore fisheries erode P resource efficiency by 2.12% and 9.19%, respectively. With the promotion of a zero-waste society in China, effective P-cycle management is expected.


Asunto(s)
Desarrollo Económico , Fósforo , China , Fertilizantes , Agricultura
15.
Water Res ; 256: 121571, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583332

RESUMEN

'Candidatus Methanoperedens nitroreducens' is an archaeal methanotroph with global importance that links carbon and nitrogen cycles and great potential for sustainable operation of wastewater treatment. It has been reported to mediate the anaerobic oxidation of methane through a reverse methanogenesis pathway while reducing nitrate to nitrite. Here, we demonstrate that 'Ca. M. nitroreducens' reduces ferric iron forming ammonium (23.1 %) and nitrous oxide (N2O, 46.5 %) from nitrate. These results are supported with the upregulation of genes coding for proteins responsible for dissimilatory nitrate reduction to ammonium (nrfA), N2O formation (norV, cyt P460), and multiple multiheme c-type cytochromes for ferric iron reduction. Concomitantly, an increase in the N2O-reducing SJA-28 lineage and a decrease in the nitrite-reducing 'Candidatus Methylomirabilis oxyfera' are consistent with the changes in 'Ca. M. nitroreducens' end products. These findings demonstrate the highly flexible physiology of 'Ca. M. nitroreducens' in anaerobic ecosystems with diverse electron acceptor conditions, and further reveals its roles in linking methane oxidation to global biogeochemical cycles. 'Ca. M. nitroreducens' could significantly affect the bioavailability of nitrogen sources as well as the emission of greenhouse gas in natural ecosystems and wastewater treatment plants.


Asunto(s)
Compuestos de Amonio , Metano , Nitratos , Óxido Nitroso , Oxidación-Reducción , Metano/metabolismo , Óxido Nitroso/metabolismo , Compuestos de Amonio/metabolismo , Anaerobiosis , Nitratos/metabolismo , Compuestos Férricos/metabolismo
16.
Water Res ; 256: 121600, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640563

RESUMEN

A limited understanding of microbial interactions and community assembly mechanisms in constructed wetlands (CWs), particularly with different substrates, has hampered the establishment of ecological connections between micro-level interactions and macro-level wetland performance. In this study, CWs with distinct substrates (zeolite, CW_A; manganese ore, CW_B) were constructed to investigate the nutrient removal efficiency, microbial interactions, metabolic mechanisms, and ecological assembly for treating rural sewage with a low carbon-to-nitrogen ratio. CW_B showed higher removal of ammonia nitrogen and total nitrogen by about 1.75-6.75 % and 3.42-5.18 %, respectively, compared to CW_A. Candidatus_Competibacter (denitrifying glycogen-accumulating bacteria) was the dominant microbial genus in CW_A, whereas unclassified_f_Blastocatellaceae (involved in carbon and nitrogen transformation) dominated in CW_B. The null model revealed that stochastic processes (drift) dominated community assembly in both CWs; however, deterministic selection accounted for a higher proportion in CW_B. Compared to those in CW_A, the interactions between microbes in CW_B were more complex, with more key microbes involved in carbon, nitrogen, and phosphorus conversion; the synergistic cooperation of functional bacteria facilitated simultaneous nitrification-denitrification. Manganese ores favour biofilm formation, increase the activity of the electron transport system, and enhance ammonia oxidation and nitrate reduction. These results elucidated the ecological patterns exhibited by microbes under different substrate conditions thereby contributing to our understanding of how substrates shape distinct microcosms in CW systems. This study provides valuable insights for guiding the future construction and management of CWs.


Asunto(s)
Carbono , Nitrógeno , Eliminación de Residuos Líquidos , Aguas Residuales , Humedales , Nitrógeno/metabolismo , Carbono/metabolismo , Eliminación de Residuos Líquidos/métodos , Bacterias/metabolismo
17.
J Environ Manage ; 358: 120832, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599089

RESUMEN

Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 µm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.


Asunto(s)
Biodegradación Ambiental , Larva , Microplásticos , Polietileno , Tenebrio , Animales , Tenebrio/metabolismo , Polietileno/metabolismo , Microplásticos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Estrés Oxidativo
18.
Sci Total Environ ; 931: 172466, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38626826

RESUMEN

The burgeoning issue of plasmid-mediated resistance genes (ARGs) dissemination poses a significant threat to environmental integrity. However, the prediction of ARGs prevalence is overlooked, especially for emerging ARGs that are potentially evolving gene exchange hotspot. Here, we explored to classify plasmid or chromosome sequences and detect resistance gene prevalence by using DNABERT. Initially, the DNABERT fine-tuned in plasmid and chromosome sequences followed by multilayer perceptron (MLP) classifier could achieve 0.764 AUC (Area under curve) on external datasets across 23 genera, outperforming 0.02 AUC than traditional statistic-based model. Furthermore, Escherichia, Pseudomonas single genera based model were also be trained to explore its predict performance to ARGs prevalence detection. By integrating K-mer frequency attributes, our model could boost the performance to predict the prevalence of ARGs in an external dataset in Escherichia with 0.0281-0.0615 AUC and Pseudomonas with 0.0196-0.0928 AUC. Finally, we established a random forest model aimed at forecasting the relative conjugation transfer rate of plasmids with 0.7956 AUC, drawing on data from existing literature. It identifies the plasmid's repression status, cellular density, and temperature as the most important factors influencing transfer frequency. With these two models combined, they provide useful reference for quick and low-cost integrated evaluation of resistance gene transfer, accelerating the process of computer-assisted quantitative risk assessment of ARGs transfer in environmental field.


Asunto(s)
Transferencia de Gen Horizontal , Plásmidos , Plásmidos/genética , Conjugación Genética , Farmacorresistencia Bacteriana/genética , Pseudomonas/genética
19.
Sci Total Environ ; 929: 172598, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642769

RESUMEN

Wastewater treatment is an important source of non-CO2 greenhouse gases (GHGs). However, current quantification of these GHG emissions mainly employs unit-based measurements, where emissions from individual process units are identified, leading to large uncertainties of overall emissions. Here we introduce plant-integrated measurements, where emissions from the whole plant are measured through the off-gas pipelines of the enclosed facility, to quantify methane (CH4) and nitrous oxide (N2O) emissions from an underground municipal wastewater treatment plant (WWTP) in southern China. Our results show that the primary oxic tank contributes the largest in total CH4 and N2O emissions, with an average fraction of over 80 % and over 90 %, respectively. This can be attributed to the vigorous aeration process, which facilitates the transfer of dissolved CH4 and N2O from the liquid phase to the atmosphere through intensive air stripping. The plant-integrated measurements yield around 3-9 times higher emission factors of CH4 and N2O than the unit-based measurements. This difference in emission accounting is attributed to both varying survey durations of the two approaches and the omission of uncertain emission sources during unit-based measurements. The comparison between these two approaches indicates that plant-integrated measurements are more applicable for emission quantification of the whole plant whereas unit-based measurements provide insights into the emission characteristics of individual process units. More plant-integrated measurements are needed in the future for more accurate emission accounting of WWTPs.

20.
Sci Total Environ ; 929: 172651, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38653406

RESUMEN

The widespread use of microplastics (MPs) has led to an increase in their discharge to wastewater treatment plants. However, the knowledge of impact of MPs on macro-performance and micro-ecology in simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) systems is limited, hampering the understanding of potential risks posed by MPs. This study firstly comprehensively investigated the performance, species interactions, and community assembly under polystyrene (PS) and polyvinyl chloride (PVC) exposure in SNDPR systems. The results showed under PS (1, 10 mg/L) and PVC (1, 10 mg/L) exposure, total nitrogen removal was reduced by 3.38-10.15 %. PS and PVC restrained the specific rates of nitrite and nitrate reduction (SNIRR, SNRR), as well as the activities of nitrite and nitrate reductase enzymes (NIR, NR). The specific ammonia oxidation rate (SAOR) and activity of ammonia oxidase enzyme (AMO) were reduced only at 10 mg/L PVC. PS and PVC enhanced the size of co-occurrence networks, niche breadth, and number of key species while decreasing microbial cooperation by 5.85-13.48 %. Heterogeneous selection dominated microbial community assembly, and PS and PVC strengthened the contribution of stochastic processes. PICRUSt prediction further revealed some important pathways were blocked by PS and PVC. Together, the reduced TN removal under PS and PVC exposure can be attributed to the inhibition of SAOR, SNRR, and SNIRR, the restrained activities of NIR, NR, and AMO, the changes in species interactions and community assembly mechanisms, and the suppression of some essential metabolic pathways. This paper offers a new perspective on comprehending the effects of MPs on SNDPR systems.


Asunto(s)
Desnitrificación , Microplásticos , Nitrificación , Fósforo , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Fósforo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Microbiota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA