Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Cell Biol ; 26(5): 710-718, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714853

RESUMEN

During brain development, neural progenitors expand through symmetric divisions before giving rise to differentiating cell types via asymmetric divisions. Transition between those modes varies among individual neural stem cells, resulting in clones of different sizes. Imaging-based lineage tracing allows for lineage analysis at high cellular resolution but systematic approaches to analyse clonal behaviour of entire tissues are currently lacking. Here we implement whole-tissue lineage tracing by genomic DNA barcoding in 3D human cerebral organoids, to show that individual stem cell clones produce progeny on a vastly variable scale. By using stochastic modelling we find that variable lineage sizes arise because a subpopulation of lineages retains symmetrically dividing cells. We show that lineage sizes can adjust to tissue demands after growth perturbation via chemical ablation or genetic restriction of a subset of cells in chimeric organoids. Our data suggest that adaptive plasticity of stem cell populations ensures robustness of development in human brain organoids.


Asunto(s)
Linaje de la Célula , Células-Madre Neurales , Organoides , Organoides/citología , Organoides/metabolismo , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular , Proliferación Celular , Células Clonales , Neurogénesis/genética , Código de Barras del ADN Taxonómico , Animales
2.
Nat Methods ; 20(12): 2034-2047, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38052989

RESUMEN

Ventral midbrain dopaminergic neurons project to the striatum as well as the cortex and are involved in movement control and reward-related cognition. In Parkinson's disease, nigrostriatal midbrain dopaminergic neurons degenerate and cause typical Parkinson's disease motor-related impairments, while the dysfunction of mesocorticolimbic midbrain dopaminergic neurons is implicated in addiction and neuropsychiatric disorders. Study of the development and selective neurodegeneration of the human dopaminergic system, however, has been limited due to the lack of an appropriate model and access to human material. Here, we have developed a human in vitro model that recapitulates key aspects of dopaminergic innervation of the striatum and cortex. These spatially arranged ventral midbrain-striatum-cortical organoids (MISCOs) can be used to study dopaminergic neuron maturation, innervation and function with implications for cell therapy and addiction research. We detail protocols for growing ventral midbrain, striatal and cortical organoids and describe how they fuse in a linear manner when placed in custom embedding molds. We report the formation of functional long-range dopaminergic connections to striatal and cortical tissues in MISCOs, and show that injected, ventral midbrain-patterned progenitors can mature and innervate the tissue. Using these assembloids, we examine dopaminergic circuit perturbations and show that chronic cocaine treatment causes long-lasting morphological, functional and transcriptional changes that persist upon drug withdrawal. Thus, our method opens new avenues to investigate human dopaminergic cell transplantation and circuitry reconstruction as well as the effect of drugs on the human dopaminergic system.


Asunto(s)
Enfermedad de Parkinson , Humanos , Mesencéfalo/anatomía & histología , Mesencéfalo/fisiología , Dopamina , Neuronas Dopaminérgicas , Cuerpo Estriado
3.
Cell ; 186(25): 5587-5605.e27, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38029745

RESUMEN

The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.


Asunto(s)
Cardiopatías , Ventrículos Cardíacos , Corazón , Humanos , Transcriptoma/genética , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Cardiopatías/genética , Cardiopatías/metabolismo
4.
Adv Mater ; 35(41): e2300305, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572376

RESUMEN

3D organoids are widely used as tractable in vitro models capable of elucidating aspects of human development and disease. However, the manual and low-throughput culture methods, coupled with a low reproducibility and geometric heterogeneity, restrict the scope and application of organoid research. Combining expertise from stem cell biology and bioengineering offers a promising approach to address some of these limitations. Here, melt electrospinning writing is used to generate tuneable grid scaffolds that can guide the self-organization of pluripotent stem cells into patterned arrays of embryoid bodies. Grid geometry is shown to be a key determinant of stem cell self-organization, guiding the position and size of emerging lumens via curvature-controlled tissue growth. Two distinct methods for culturing scaffold-grown embryoid bodies into either interconnected or spatially discrete cerebral organoids are reported. These scaffolds provide a high-throughput method to generate, culture, and analyze large numbers of organoids, substantially reducing the time investment and manual labor involved in conventional methods of organoid culture. It is anticipated that this methodological development will open up new opportunities for guiding pluripotent stem cell culture, studying lumenogenesis, and generating large numbers of uniform organoids for high-throughput screening.


Asunto(s)
Organoides , Células Madre Pluripotentes , Humanos , Reproducibilidad de los Resultados , Encéfalo
5.
New Phytol ; 236(4): 1455-1470, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35944559

RESUMEN

Plant biotrophic pathogens employ secreted molecules, called effectors, to suppress the host immune system and redirect the host's metabolism and development in their favour. Putative effectors of the gall-inducing maize pathogenic fungus Ustilago maydis were analysed for their ability to induce auxin signalling in plants. Using genetic, biochemical, cell-biological, and bioinformatic approaches we functionally elucidate a set of five, genetically linked effectors, called Topless (TPL) interacting protein (Tips) effectors that induce auxin signalling. We show that Tips induce auxin signalling by interfering with central corepressors of the TPL family. CRISPR-Cas9 mutants and deletion strain analysis indicate that the auxin signalling inducing subcluster effectors plays a redundant role in virulence. Although none of the Tips seem to have a conserved interaction motif, four of them bind solely to the N-terminal TPL domain and, for Tip1 and Tip4, we demonstrate direct competition with auxin/indole-3-acetic acid transcriptional repressors for their binding to TPL class of corepressors. Our findings reveal that TPL proteins, key regulators of growth-defence antagonism, are a major target of the U. maydis effectome.


Asunto(s)
Ustilago , Ustilago/genética , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Zea mays/microbiología , Ácidos Indolacéticos/metabolismo , Proteínas Co-Represoras/metabolismo
6.
Front Plant Sci ; 10: 1437, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803201

RESUMEN

During infection pathogens secrete small molecules, termed effectors, to manipulate and control the interaction with their specific hosts. Both the pathogen and the plant are under high selective pressure to rapidly adapt and co-evolve in what is usually referred to as molecular arms race. Components of the host's immune system form a network that processes information about molecules with a foreign origin and damage-associated signals, integrating them with developmental and abiotic cues to adapt the plant's responses. Both in the case of nucleotide-binding leucine-rich repeat receptors and leucine-rich repeat receptor kinases interaction networks have been extensively characterized. However, little is known on whether pathogenic effectors form complexes to overcome plant immunity and promote disease. Ustilago maydis, a biotrophic fungal pathogen that infects maize plants, produces effectors that target hubs in the immune network of the host cell. Here we assess the capability of U. maydis effector candidates to interact with each other, which may play a crucial role during the infection process. Using a systematic yeast-two-hybrid approach and based on a preliminary pooled screen, we selected 63 putative effectors for one-on-one matings with a library of nearly 300 effector candidates. We found that 126 of these effector candidates interacted either with themselves or other predicted effectors. Although the functional relevance of the observed interactions remains elusive, we propose that the observed abundance in complex formation between effectors adds an additional level of complexity to effector research and should be taken into consideration when studying effector evolution and function. Based on this fundamental finding, we suggest various scenarios which could evolutionarily drive the formation and stabilization of an effector interactome.

7.
Development ; 146(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30665888

RESUMEN

Turbidity and opaqueness are inherent properties of tissues that limit the capacity to acquire microscopic images through large tissues. Creating a uniform refractive index, known as tissue clearing, overcomes most of these issues. These methods have enabled researchers to image large and complex 3D structures with unprecedented depth and resolution. However, tissue clearing has been adopted to a limited extent due to a combination of cost, time, complexity of existing methods and potential negative impact on fluorescence signal. Here, we describe 2Eci (2nd generation ethyl cinnamate-based clearing), which can be used to clear a wide range of tissues in several species, including human organoids, Drosophila melanogaster, zebrafish, axolotl and Xenopus laevis, in as little as 1-5 days, while preserving a broad range of fluorescent proteins, including GFP, mCherry, Brainbow and Alexa-conjugated fluorophores. Ethyl cinnamate is non-toxic and can easily be used in multi-user microscope facilities. This method opens up tissue clearing to a much broader group of researchers due to its ease of use, the non-toxic nature of ethyl cinnamate and broad applicability.


Asunto(s)
Cinamatos/química , Colorantes Fluorescentes/química , Imagenología Tridimensional/métodos , Organoides/citología , Ambystoma mexicanum , Animales , Drosophila melanogaster , Humanos , Microscopía Fluorescente , Xenopus laevis , Pez Cebra
8.
Nat Methods ; 14(7): 743-751, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28504681

RESUMEN

Human brain development involves complex interactions between different regions, including long-distance neuronal migration or formation of major axonal tracts. Different brain regions can be cultured in vitro within 3D cerebral organoids, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a coculture method combining brain regions of choice within one organoid tissue. By fusing organoids of dorsal and ventral forebrain identities, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate CXCR4-dependent GABAergic interneuron migration from ventral to dorsal forebrain and describe methodology for time-lapse imaging of human interneuron migration. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions should offer researchers the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients and to test potential therapeutic compounds.


Asunto(s)
Corteza Cerebral/fisiología , Interneuronas/fisiología , Organoides/fisiología , Animales , Encéfalo/embriología , Comunicación Celular , Técnicas de Cultivo de Célula , Movimiento Celular , Corteza Cerebral/citología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA