Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Mol Biosci ; 10: 1266431, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767159

RESUMEN

Cell-free, chemoenzymatic platforms are emerging technologies towards generating glycoconjugates with defined and homogeneous glycoforms. Recombinant oligosaccharyltransferases can be applied to glycosylate "empty," i.e., aglycosyalted, peptides and proteins. While bacterial oligosaccharlytransferases have been extensively investigated, only recently a recombinant eukaryotic single-subunit oligosaccharyltransferase has been successfully used to in vitro N-glycosylate peptides. However, its applicability towards synthesizing full-length glycoproteins and utilizing glycans beyond mannose-type glycans for the transfer have not be determined. Here, we show for the first time the synthesis of hybrid- and complex-type glycans using synthetic lipid carriers as substrates for in vitro N-glycosylation reactions. For this purpose, transmembrane-deleted human ß-1,2 N-acetylglucosamintransferase I and II (MGAT1ΔTM and MGAT2ΔTM) and ß-1,4-galactosyltransferase (GalTΔTM) have been expressed in Escherichia coli and used to extend an existing multi-enzyme cascade. Both hybrid and agalactosylated complex structures were transferred to the N-glycosylation consensus sequence of peptides (10 amino acids: G-S-D-A-N-Y-T-Y-T-Q) by the recombinant oligosaccharyltransferase STT3A from Trypanosoma brucei.

2.
Chembiochem ; 24(21): e202300463, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37578628

RESUMEN

CDP-glycerol is a nucleotide-diphosphate-activated version of glycerol. In nature, it is required for the biosynthesis of teichoic acid in Gram-positive bacteria, which is an appealing target epitope for the development of new vaccines. Here, a cell-free multi-enzyme cascade was developed to synthetize nucleotide-activated glycerol from the inexpensive and readily available substrates cytidine and glycerol. The cascade comprises five recombinant enzymes expressed in Escherichia coli that were purified by immobilized metal affinity chromatography. As part of the cascade, ATP is regenerated in situ from polyphosphate to reduce synthesis costs. The enzymatic cascade was characterized at the laboratory scale, and the products were analyzed by high-performance anion-exchange chromatography (HPAEC)-UV and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). After the successful synthesis had been confirmed, a design-of-experiments approach was used to screen for optimal operation conditions (temperature, pH value and MgCl2 concentration). Overall, a substrate conversion of 89 % was achieved with respect to the substrate cytidine.


Asunto(s)
Glicerol , Nucleótidos , Citidina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
Chembiochem ; 23(2): e202100361, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34637168

RESUMEN

High costs and low availability of UDP-galactose hampers the enzymatic synthesis of valuable oligosaccharides such as human milk oligosaccharides. Here, we report the development of a platform for the scalable, biocatalytic synthesis and purification of UDP-galactose. UDP-galactose was produced with a titer of 48 mM (27.2 g/L) in a small-scale batch process (200 µL) within 24 h using 0.02 genzyme /gproduct . Through in-situ ATP regeneration, the amount of ATP (0.6 mM) supplemented was around 240-fold lower than the stoichiometric equivalent required to achieve the final product yield. Chromatographic purification using porous graphic carbon adsorbent yielded UDP-galactose with a purity of 92 %. The synthesis was transferred to 1 L preparative scale production in a stirred tank bioreactor. To further reduce the synthesis costs here, the supernatant of cell lysates was used bypassing expensive purification of enzymes. Here, 23.4 g/L UDP-galactose were produced within 23 h with a synthesis yield of 71 % and a biocatalyst load of 0.05 gtotal_protein /gproduct . The costs for substrates per gram of UDP-galactose synthesized were around 0.26 €/g.


Asunto(s)
Enzimas/metabolismo , Uridina Difosfato Galactosa/biosíntesis , Adenosina Trifosfato/metabolismo , Reactores Biológicos , Sistema Libre de Células , Concentración de Iones de Hidrógeno , Oligosacáridos/biosíntesis , Prueba de Estudio Conceptual , Uridina Difosfato Galactosa/aislamiento & purificación
4.
Biospektrum (Heidelb) ; 27(6): 657-659, 2021.
Artículo en Alemán | MEDLINE | ID: mdl-34658539

RESUMEN

The field of synthetic glycobiotechnology encompasses the synthesis and modification of free carbohydrates and carbohydrates linked to biomolecules. Our group develops bio-catalytic processes for the synthesis of carbohydrate building blocks, so-called sugar nucleotides, and cell-free multi-enzyme cascades to tailor carbohydrates linked to proteins. The technology can eventually help to advance our understanding of the roles of specific carbohydrates in nutrition and medicine and contribute to human health and well-being.

5.
Front Bioeng Biotechnol ; 9: 699025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485255

RESUMEN

The baculovirus-insect cell expression system is readily utilized to produce viral glycoproteins for research as well as for subunit vaccines and vaccine candidates, for instance against SARS-CoV-2 infections. However, the glycoforms of recombinant proteins derived from this expression system are inherently different from mammalian cell-derived glycoforms with mainly complex-type N-glycans attached, and the impact of these differences in protein glycosylation on the immunogenicity is severely under investigated. This applies also to the SARS-CoV-2 spike glycoprotein, which is the antigen target of all licensed vaccines and vaccine candidates including virus like particles and subunit vaccines that are variants of the spike protein. Here, we expressed the transmembrane-deleted human ß-1,2 N-acetlyglucosamintransferases I and II (MGAT1ΔTM and MGAT2ΔTM) and the ß-1,4-galactosyltransferase (GalTΔTM) in E. coli to in-vitro remodel the N-glycans of a recombinant SARS-CoV-2 spike glycoprotein derived from insect cells. In a cell-free sequential one-pot reaction, fucosylated and afucosylated paucimannose-type N-glycans were converted to complex-type galactosylated N-glycans. In the future, this in-vitro glycoengineering approach can be used to efficiently generate a wide range of N-glycans on antigens considered as vaccine candidates for animal trials and preclinical testing to better characterize the impact of N-glycosylation on immunity and to improve the efficacy of protein subunit vaccines.

6.
mBio ; 12(3): e0089721, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34076489

RESUMEN

Capsule polymers are crucial virulence factors of pathogenic bacteria and are used as antigens in glycoconjugate vaccine formulations. Some Gram-negative pathogens express poly(glycosylglycerol phosphate) capsule polymers that resemble Gram-positive wall teichoic acids and are synthesized by TagF-like capsule polymerases. So far, the biotechnological use of these enzymes for vaccine developmental studies was restricted by the unavailability of enantiopure CDP-glycerol, one of the donor substrates required for polymer assembly. Here, we use CTP:glycerol-phosphate cytidylyltransferases (GCTs) and TagF-like polymerases to synthesize the poly(glycosylglycerol phosphate) capsule polymer backbones of the porcine pathogen Actinobacillus pleuropneumoniae, serotypes 3 and 7 (App3 and App7). GCT activity was confirmed by high-performance liquid chromatography, and polymers were analyzed using comprehensive nuclear magnetic resonance studies. Solid-phase synthesis protocols were established to allow potential scale-up of polymer production. In addition, one-pot reactions exploiting glycerol-kinase allowed us to start the reaction from inexpensive, widely available substrates. Finally, this study highlights that multidomain TagF-like polymerases can be transformed by mutagenesis of active site residues into single-action transferases, which in turn can act in trans to build-up structurally new polymers. Overall, our protocols provide enantiopure, nature-identical capsule polymer backbones from App2, App3, App7, App9, and App11, Neisseria meningitidis serogroup H, and Bibersteinia trehalosi serotypes T3 and T15. IMPORTANCE Economic synthesis platforms for the production of animal vaccines could help reduce the overuse and misuse of antibiotics in animal husbandry, which contributes greatly to the increase of antibiotic resistance. Here, we describe a highly versatile, easy-to-use mix-and-match toolbox for the generation of glycerol-phosphate-containing capsule polymers that can serve as antigens in glycoconjugate vaccines against Actinobacillus pleuropneumoniae and Bibersteinia trehalosi, two pathogens causing considerable economic loss in the swine, sheep, and cattle industries. We have established scalable protocols for the exploitation of a versatile enzymatic cascade with modular architecture, starting with the preparative-scale production of enantiopure CDP-glycerol, a precursor for a multitude of bacterial surface structures. Thereby, our approach not only allows the synthesis of capsule polymers but might also be exploitable for the (chemo)enzymatic synthesis of other glycerol-phosphate-containing structures such as Gram-positive wall teichoic acids or lipoteichoic acids.


Asunto(s)
Actinobacillus pleuropneumoniae/química , Cápsulas Bacterianas/química , Glicerofosfatos/biosíntesis , Neisseria meningitidis/química , Pasteurellaceae/química , Polímeros/química , Actinobacillus pleuropneumoniae/patogenicidad , Animales , Vacunas Bacterianas/química , Bovinos , Glicerofosfatos/análisis , Glicerofosfatos/metabolismo , Ovinos , Porcinos
8.
Adv Biochem Eng Biotechnol ; 175: 231-280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33052414

RESUMEN

Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.


Asunto(s)
Glicoconjugados , Polisacáridos , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Oligosacáridos
9.
J Biotechnol ; 322: 54-65, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32653637

RESUMEN

A wide range of glycoproteins can be recombinantly expressed in aglycosylated forms in bacterial and cell-free production systems. To investigate the effect of glycosylation of these proteins on receptor binding, stability, efficacy as drugs, pharmacodynamics and pharmacokinetics, an efficient glycosylation platform is required. Here, we present a cell-free synthetic platform for the in vitro N-glycosylation of peptides mimicking the endoplasmic reticulum (ER) glycosylation machinery of eukaryotes. The one-pot, two compartment multi-enzyme cascade consisting of eight recombinant enzymes including the three Leloir glycosyltransferases, Alg1, Alg2 and Alg11, expressed in E. coli and S. cerevisiae, respectively, has been engineered to produce the core lipid-linked (LL) oligosaccharide mannopentaose-di-(N-acetylglucosamine) (LL-Man5). Pythanol (C20H42O), a readily available alcohol consisting of regular isoprenoid units, was utilized as the lipid anchor. As part of the cascade, GDP-mannose was de novo produced from the inexpensive substrates ADP, polyphosphate and mannose. To prevent enzyme inhibition, the nucleotide sugar cascade and the glycosyltransferase were segregated into two compartments by a cellulose ester membrane with 3.5 kDa cut-off allowing for the effective diffusion of GDP-mannose across compartments. Finally, as a proof-of-principle, pythanyl-linked Man5 and the single-subunit oligosaccharyltransferase Trypanosoma brucei STT3A expressed in Sf9 insect cells were used to in vitro N-glycosylate a synthetic peptide of ten amino acids bearing the eukaryotic consensus motif N-X-S/T.


Asunto(s)
Enzimas , Glicopéptidos , Lipopolisacáridos/metabolismo , Biología Sintética/métodos , Animales , Biocatálisis , Sistema Libre de Células/enzimología , Sistema Libre de Células/metabolismo , Disacáridos/química , Disacáridos/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Enzimas/genética , Enzimas/metabolismo , Glicopéptidos/química , Glicopéptidos/metabolismo , Glicosilación , Lipopolisacáridos/química , Células Sf9
10.
J Biotechnol ; 283: 120-129, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30044949

RESUMEN

In spite of huge endeavors in cell line engineering to produce glycoproteins with desired and uniform glycoforms, it is still not possible in vivo. Alternatively, in vitro glycoengineering can be used for the modification of glycans. However, in vitro glycoengineering relies on expensive nucleotide sugars, such as uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) which serves as GlcNAc donor for the synthesis of various glycans. In this work, we present a systematic study for the cell-free de novo synthesis and regeneration of UDP-GlcNAc from polyphosphate, UMP and GlcNAc by a cascade of five enzymes (N-acetylhexosamine kinase (NahK), Glc-1P uridyltransferase (GalU), uridine monophosphate kinase (URA6), polyphosphate kinase (PPK3), and inorganic diphosphatase (PmPpA). All enzymes were expressed in E. coli BL21 Gold (DE3) and purified using immobilized metal affinity chromatography (IMAC). Results from one-pot experiments demonstrate the successful production of UDP-GlcNAc with a yield approaching 100%. The highest volumetric productivity of the cascade was about 0.81 g L-1  h-1 of UDP-GlcNAc. A simple model based on mass action kinetics was sufficient to capture the dynamic behavior of the multienzyme pathway. Moreover, a design equation based on metabolic control analysis was established to investigate the effect of enzyme concentration on the UDP-GlcNAc flux and to demonstrate that the flux of UDP-GlcNAc can be controlled by means of the enzyme concentrations. The effect of temperature on the UDP-GlcNAc flux followed an Arrhenius equation and the optimal co-factor concentration (Mg2+) for high UDP-GlcNAc synthesis rates depended on the working temperature. In conclusion, the study covers the entire engineering process of a multienzyme cascade, i.e. pathway design, enzyme expression, enzyme purification, reaction kinetics and investigation of the influence of basic parameters (temperature, co-factor concentration, enzyme concentration) on the synthesis rate. Thus, the study lays the foundation for future cascade optimization, preparative scale UDP-GlcNAc synthesis and for in situ coupling of the network with UDP-GlcNAc transferases to efficiently regenerate UDP-GlcNAc. Hence, this study provides a further step towards cost-effective in vitro glycoengineering of antibodies and other glycosylated proteins.


Asunto(s)
Sistema Libre de Células/metabolismo , Enzimas/metabolismo , Uridina Difosfato N-Acetilglucosamina/biosíntesis , Vías Biosintéticas , Enzimas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Cinética , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Temperatura
11.
Biotechnol Bioeng ; 115(1): 192-205, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28922469

RESUMEN

Glycosylation of proteins is a key function of the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell-cell adhesion, blood-group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate-guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1-domain polyphosphate kinase 2 (1D-Ppk2) expressed in E. coli for the cell-free production and regeneration of GDP-mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP-mannose is produced at various conditions, that is pH 7-8, temperature 25-35°C and co-factor concentrations of 5-20 mM MgCl2 . The maximum reaction rate of GDP-mannose achieved was 2.7 µM/min at 30°C and 10 mM MgCl2 producing 566 nmol GDP-mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane-deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER-associated lipid-linked oligosaccharide (LLO) assembly. Thereby, in a one-pot reaction, phytanyl-PP-(GlcNAc)2 -Man1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl-PP-(GlcNAc)2 -Man1 can serve as a substrate for the synthesis of LLO for the cell-free in vitro glycosylation of proteins. A high-performance anion exchange chromatography method with UV and conductivity detection (HPAEC-UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established kinetic model enabled the optimization of the GDP-mannose regenerating cascade and can further be used to study coupling of the GDP-mannose cascade with glycosyltransferases. Overall, the study envisages a first step towards the development of a platform for the cell-free production of LLOs as precursors for in vitro glycoengineering of proteins.


Asunto(s)
Enzimas/metabolismo , Escherichia coli/genética , Guanosina Difosfato Manosa/metabolismo , Lipopolisacáridos/metabolismo , Proteínas Recombinantes/metabolismo , Coenzimas/metabolismo , Enzimas/genética , Enzimas/aislamiento & purificación , Escherichia coli/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Cloruro de Magnesio/metabolismo , Manosa/metabolismo , Polifosfatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA