RESUMEN
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
RESUMEN
BACKGROUND: The gut microbiome is a potentially modifiable factor in Alzheimer's disease (AD); however, understanding of its composition and function regarding AD pathology is limited. METHODS: Shallow-shotgun metagenomic data was used to analyze fecal microbiome from participants enrolled in the Wisconsin Microbiome in Alzheimer's Risk Study, leveraging clinical data and cerebrospinal fluid (CSF) biomarkers. Differential abundance and ordinary least squares regression analyses were performed to find differentially abundant gut microbiome features and their associations with CSF biomarkers of AD and related pathologies. RESULTS: Gut microbiome composition and function differed between people with AD and cognitively unimpaired individuals. The compositional difference was replicated in an independent cohort. Differentially abundant gut microbiome features were associated with CSF biomarkers of AD and related pathologies. DISCUSSION: These findings enhance our understanding of alterations in gut microbial composition and function in AD, and suggest that gut microbes and their pathways are linked to AD pathology.
RESUMEN
Microbiota play a critical role in the development and training of host innate and adaptive immunity. We present the cellular landscape of the upper airway, specifically the larynx, by establishing a reference single-cell atlas, while dissecting the role of microbiota in cell development and function at single-cell resolution. We highlight the larynx's cellular heterogeneity with the identification of 16 cell types and 34 distinct subclusters. Our data demonstrate that commensal microbiota have extensive impact on the laryngeal immune system by regulating cell differentiation, increasing the expression of genes associated with host defense, and altering gene regulatory networks. We uncover macrophages, innate lymphoid cells, and multiple secretory epithelial cells, whose cell proportions and expressions vary with microbial exposure. These cell types play pivotal roles in maintaining laryngeal and upper airway health and provide specific guidance into understanding the mechanism of immune system regulation by microbiota in laryngeal health and disease.
RESUMEN
Structural changes to the vocal fold (VF) epithelium, namely, loosened intercellular junctions, have been reported in VF benign lesions. The potential mechanisms responsible for the disruption of cell junctions do not address the contribution of resident microbial communities to this pathological phenomenon. In this study, we focused on determining the relationship between Streptococcus pseudopneumoniae (SP), a dominant bacterial species associated with benign lesions, and Streptococcus salivarius (SS), a commensal bacterium, with human VF epithelial cells in our three-dimensional model of the human VF mucosa. This experimental system enabled direct deposition of bacteria onto constructs at the air/liquid interface, allowing for the assessment of bacterium-host interactions at the cellular, molecular and ultrastructural levels. Our findings demonstrate that SP disrupts VF epithelial integrity and initiates inflammation via the exported products HtrA1 and pneumolysin. In contrast, SS attaches to the VF epithelium, reduces inflammation and induces Mmp2-mediated apical desquamation of infected cells to mitigate the impact of pathogens. In conclusion, this study highlights the complexity of microbial involvement in VF pathology and potential VF mucosal restoration in the presence of laryngeal commensals.
Asunto(s)
Streptococcus salivarius , Pliegues Vocales , Humanos , Pliegues Vocales/microbiología , Pliegues Vocales/patología , Streptococcus salivarius/fisiología , Células Epiteliales/microbiología , Células Epiteliales/patología , Membrana Mucosa/microbiología , Membrana Mucosa/patología , Inflamación/patología , Inflamación/microbiología , Streptococcus pneumoniae/fisiologíaRESUMEN
Background: There is growing interest in the development of next-generation probiotics to prevent or treat metabolic syndrome. Previous studies suggested that Anaerobutyricum soehngenii may represent a promising probiotic candidate. A recent human study showed that while A. soehngenii supplementation is well tolerated and safe, it resulted in variable responses among individuals with a subset of the subjects significantly benefiting from the treatment. We hypothesized that gut microbiome variation is linked to the heterogeneous responses to A. soehngenii treatment observed in humans. Results: We colonized germ-free mice with fecal microbiota from human subjects that responded to A. soehngenii treatment (R65 and R55) and non-responder subjects (N96 and N40). Colonized mice were fed a high-fat diet (45% kcal from fat) to induce insulin resistance, and orally treated with either live A. soehngenii culture or heat-killed culture. We found that R65-colonized mice received a benefit in glycemic control with live A. soehngenii treatment while mice colonized with microbiota from the other donors did not. The glucose homeostasis improvements observed in R65-colonized mice were positively correlated with levels of cecal propionate, an association that was reversed in N40-colonized mice. To test whether the microbiome modulates the effects of propionate, R65- or N40-colonized mice were treated with tripropionin (TP, glycerol tripropionate), a pro-drug of propionate, or glycerol (control). TP supplementation showed a similar response pattern as that observed in live A. soehngenii treatment, suggesting that propionate may mediate the effects of A. soehngenii. We also found that TP supplementation to conventional mice reduces adiposity, improves glycemic control, and reduces plasma insulin compared to control animals supplemented with glycerol. Conclusions: These findings highlight the importance of the microbiome on glycemic control and underscore the need to better understand personal microbiome-by-therapeutic interactions to develop more effective treatment strategies.
RESUMEN
The larynx undergoes significant age and sex-related changes in structure and function across the lifespan. Emerging evidence suggests that laryngeal microbiota influences immunological processes. Thus, there is a critical need to delineate microbial mechanisms that may underlie laryngeal physiological and immunological changes. As a first step, the present study explored potential age and sex-related changes in the laryngeal microbiota across the lifespan in a murine model. We compared laryngeal microbial profiles of mice across the lifespan (adolescents, young adults, older adults and elderly) to determine age and sex-related microbial variation on 16s rRNA gene sequencing. Measures of alpha diversity and beta diversity were obtained, along with differentially abundant taxa across age groups and biological sexes. There was relative stability of the laryngeal microbiota within each age group and no significant bacterial compositional shift in the laryngeal microbiome across the lifespan. There was an abundance of short-chain fatty acid producing bacteria in the adolescent group, unique to the laryngeal microbiota; taxonomic changes in the elderly resembled that of the aged gut microbiome. There were no significant changes in the laryngeal microbiota relating to biological sex. This is the first study to report age and sex-related variation in laryngeal microbiota. This data lays the groundwork for defining how age-related microbial mechanisms may govern laryngeal health and disease. Bacterial compositional changes, as a result of environmental or systemic stimuli, may not only be indicative of laryngeal-specific metabolic and immunoregulatory processes, but may precede structural and functional age-related changes in laryngeal physiology.
Asunto(s)
Laringe , Microbiota , ARN Ribosómico 16S , Animales , Femenino , Masculino , Laringe/microbiología , Ratones , ARN Ribosómico 16S/genética , Factores de Edad , Envejecimiento/fisiología , Bacterias/clasificación , Bacterias/genética , Factores Sexuales , Ratones Endogámicos C57BLRESUMEN
In this study, we aimed to understand the potential role of the gut microbiome in the development of Alzheimer's disease (AD). We took a multi-faceted approach to investigate this relationship. Urine metabolomics were examined in individuals with AD and controls, revealing decreased formate and fumarate concentrations in AD. Additionally, we utilised whole-genome sequencing (WGS) data obtained from a separate group of individuals with AD and controls. This information allowed us to create and investigate host-microbiome personalised whole-body metabolic models. Notably, AD individuals displayed diminished formate microbial secretion in these models. Additionally, we identified specific reactions responsible for the production of formate in the host, and interestingly, these reactions were linked to genes that have correlations with AD. This study suggests formate as a possible early AD marker and highlights genetic and microbiome contributions to its production. The reduced formate secretion and its genetic associations point to a complex connection between gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and therapeutic avenues in AD management.
Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Microbiota , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Microbiota/genética , Microbioma Gastrointestinal/genética , Genómica , FormiatosRESUMEN
The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (ß = 0.02, p = 0.033), body mass index (BMI) (ß = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (ß = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (ß = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (ß = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (ß = 0.23, p = 4.4 × 10-33), and BMI (ß = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (ß = -0.19, p = 3.8 × 10-51) and triglycerides (ß = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.
RESUMEN
The molecular basis for how host genetic variation impacts gut microbial community and bacterial metabolic niches remain largely unknown. We leveraged 90 inbred hyperlipidemic mouse strains from the Hybrid Mouse Diversity Panel (HMDP), previously studied for a variety of cardio-metabolic traits. Metagenomic analysis of cecal DNA followed by genome-wide association analysis identified genomic loci that were associated with microbial enterotypes in the gut. Among these we detected a genetic locus surrounding multiple amylase genes that was associated with abundances of Firmicutes (Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family) taxa encoding distinct starch and sugar metabolism functions. We also found that lower amylase gene number in the mouse genome was associated with higher gut Muribaculaceae levels. Previous work suggests that modulation of host amylase activity impacts the availability of carbohydrates to the host and potentially to gut bacteria. The genetic variants described above were associated with distinct gut microbial communities (enterotypes) with different predicted metabolic capacities for carbohydrate degradation. Mendelian randomization analysis revealed host phenotypes, including liver fibrosis and plasma HDL-cholesterol levels, that were associated with gut microbiome enterotypes. This work reveals novel relationships between host genetic variation, gut microbial enterotypes and host physiology/disease phenotypes in mice.
RESUMEN
Gut microbiota can regulate host brain functions and influence various physiological and pathological processes through the brain-gut axis. To systematically elucidate the intervention of different gut environments on different brain regions, we implemented an integrated approach that combines 11-plex DiLeu isobaric tags with a "BRIDGE" normalization strategy to comparatively analyze the proteome of six brain regions in germ-free (GF)- and conventionally raised (ConvR)-mice. A total of 5945 proteins were identified and 5656 were quantifiable, while 1906 of them were significantly changed between GF- and ConvR-mice; 281 proteins were filtered with FC greater than 1.2 in at least one brain region, of which heatmap analysis showed clear protein profile disparities, both between brain regions and gut microbiome conditions. Gut microbiome impact is most overt in the hypothalamus and the least in the thalamus region. Collectively, this approach allows an in-depth investigation of the induced protein changes by multiple gut microbiome environments in a brain region-specific manner. This comprehensive proteomic work improves the understanding of the brain region protein association networks impacted by the gut microbiome and highlights the critical roles of the brain-gut axis.
Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Proteómica , Encéfalo , ProteomaRESUMEN
BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS: Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS: The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS: Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.
Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Propionatos , Sirtuina 3 , Humanos , Ratones , Animales , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico/fisiología , NAD , Sirtuina 3/genética , Indoles/farmacología , NiacinamidaRESUMEN
The arginine dihydrolase pathway (arc operon) present in a subset of diverse human gut species enables arginine catabolism. This specialized metabolic pathway can alter environmental pH and nitrogen availability, which in turn could shape gut microbiota inter-species interactions. By exploiting synthetic control of gene expression, we investigated the role of the arc operon in probiotic Escherichia coli Nissle 1917 on human gut community assembly and health-relevant metabolite profiles in vitro and in the murine gut. By stabilizing environmental pH, the arc operon reduced variability in community composition across different initial pH perturbations. The abundance of butyrate producing bacteria were altered in response to arc operon activity and butyrate production was enhanced in a physiologically relevant pH range. While the presence of the arc operon altered community dynamics, it did not impact production of short chain fatty acids. Dynamic computational modeling of pH-mediated interactions reveals the quantitative contribution of this mechanism to community assembly. In sum, our framework to quantify the contribution of molecular pathways and mechanism modalities on microbial community dynamics and functions could be applied more broadly.
RESUMEN
Women are at significantly greater risk of metabolic dysfunction after menopause, which subsequently leads to numerous chronic illnesses. The gut microbiome is associated with obesity and metabolic dysfunction, but its interaction with female sex hormone status and the resulting impact on host metabolism remains unclear. Herein, we characterized inflammatory and metabolic phenotypes as well as the gut microbiome associated with ovariectomy and high-fat diet feeding, compared to gonadal intact and low-fat diet controls. We then performed fecal microbiota transplantation (FMT) using gnotobiotic mice to identify the impact of ovariectomy-associated gut microbiome on inflammatory and metabolic outcomes. We demonstrated that ovariectomy led to greater gastrointestinal permeability and inflammation of the gut and metabolic organs, and that a high-fat diet exacerbated these phenotypes. Ovariectomy also led to alteration of the gut microbiome, including greater fecal ß-glucuronidase activity. However, differential changes in the gut microbiome only occurred when fed a low-fat diet, not the high-fat diet. Gnotobiotic mice that received the gut microbiome from ovariectomized mice fed the low-fat diet had greater weight gain and hepatic gene expression related to metabolic dysfunction and inflammation than those that received intact sham control-associated microbiome. These results indicate that the gut microbiome responds to alterations in female sex hormone status and contributes to metabolic dysfunction. Identifying and developing gut microbiome-targeted modulators to regulate sex hormones may be useful therapeutically in remediating menopause-related diseases.
Asunto(s)
Microbioma Gastrointestinal , Humanos , Femenino , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Obesidad/metabolismo , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Ratones Endogámicos C57BLRESUMEN
The gut microbiome and its metabolites are increasingly implicated in several cardiovascular diseases, but their role in human myocardial infarction (MI) injury responses have yet to be established. To address this, we examined stool samples from 77 ST-elevation MI (STEMI) patients using 16 S V3-V4 next-generation sequencing, metagenomics and machine learning. Our analysis identified an enriched population of butyrate-producing bacteria. These findings were then validated using a controlled ischemia/reperfusion model using eight nonhuman primates. To elucidate mechanisms, we inoculated gnotobiotic mice with these bacteria and found that they can produce beta-hydroxybutyrate, supporting cardiac function post-MI. This was further confirmed using HMGCS2-deficient mice which lack endogenous ketogenesis and have poor outcomes after MI. Inoculation increased plasma ketone levels and provided significant improvements in cardiac function post-MI. Together, this demonstrates a previously unknown role of gut butyrate-producers in the post-MI response.
Asunto(s)
Infarto del Miocardio , Infarto del Miocardio con Elevación del ST , Humanos , Animales , Ratones , Butiratos/metabolismo , Corazón , Cuerpos CetónicosRESUMEN
Age-related disease may be mediated by low levels of chronic inflammation ("inflammaging"). Recent work suggests that gut microbes can contribute to inflammation via degradation of the intestinal barrier. While aging and age-related diseases including Alzheimer's disease (AD) are linked to altered microbiome composition and higher levels of gut microbial components in systemic circulation, the role of intestinal inflammation remains unclear. To investigate whether greater gut inflammation is associated with advanced age and AD pathology, we assessed fecal samples from older adults to measure calprotectin, an established marker of intestinal inflammation which is elevated in diseases of gut barrier integrity. Multiple regression with maximum likelihood estimation and Satorra-Bentler corrections were used to test relationships between fecal calprotectin and clinical diagnosis, participant age, cerebrospinal fluid biomarkers of AD pathology, amyloid burden measured using 11C-Pittsburgh compound B positron emission tomography (PiB PET) imaging, and performance on cognitive tests measuring executive function and verbal learning and recall. Calprotectin levels were elevated in advanced age and were higher in participants diagnosed with amyloid-confirmed AD dementia. Additionally, among individuals with AD dementia, higher calprotectin was associated with greater amyloid burden as measured with PiB PET. Exploratory analyses indicated that calprotectin levels were also associated with cerebrospinal fluid markers of AD, and with lower verbal memory function even among cognitively unimpaired participants. Taken together, these findings suggest that intestinal inflammation is linked with brain pathology even in the earliest disease stages. Moreover, intestinal inflammation may exacerbate the progression toward AD.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/metabolismo , Estudios de Cohortes , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Tomografía Computarizada por Rayos X , Tomografía de Emisión de Positrones/métodos , Amiloide/metabolismo , Complejo de Antígeno L1 de Leucocito/metabolismo , Biomarcadores/metabolismo , Proteínas tau/metabolismo , Disfunción Cognitiva/patologíaRESUMEN
p-Cresol sulfate (pCS) and indoxyl sulfate (IS), gut microbiome-derived metabolites, are traditionally associated with cardiovascular disease (CVD) risks in the setting of impaired kidney function. While pharmacologic provision of pCS or IS can promote pro-thrombotic phenotypes, neither the microbial enzymes involved nor direct gut microbial production have been linked to CVD. Untargeted metabolomics was performed on a discovery cohort (n = 1,149) with relatively preserved kidney function, followed by stable isotope-dilution mass spectrometry quantification of pCS and IS in an independent validation cohort (n = 3,954). Genetic engineering of human commensals to produce p-cresol and indole gain-of-function and loss-of-function mutants, followed by colonization of germ-free mice, and studies on host thrombosis were performed. Systemic pCS and IS levels were independently associated with all-cause mortality. Both in vitro and within colonized germ-free mice p-cresol productions were recapitulated by collaboration of two organisms: a Bacteroides strain that converts tyrosine to 4-hydroxyphenylacetate, and a Clostridium strain that decarboxylates 4-hydroxyphenylacetate to p-cresol. We then engineered a single organism, Bacteroides thetaiotaomicron, to produce p-cresol, indole, or both metabolites. Colonizing germ-free mice with engineered strains, we show the gut microbial genes for p-cresol (hpdBCA) and indole (tryptophanase) are sufficient to confer a pro-thrombotic phenotype in vivo. Moreover, human fecal metagenomics analyses show that abundances of hpdBCA and tryptophanase are associated with CVD. These studies show that pCS and IS, two abundant microbiome-derived metabolites, play a broader potential role in CVD than was previously known. They also suggest that therapeutic targeting of gut microbial p-cresol- and indole-producing pathways represent rational targets for CVD.IMPORTANCEAlterations in gut microbial composition and function have been linked to numerous diseases. Identifying microbial pathways responsible for producing molecules that adversely impact the host is an important first step in the development of therapeutic interventions. Here, we first use large-scale clinical observations to link blood levels of defined microbial products to cardiovascular disease risks. Notably, the previously identified uremic toxins p-cresol sulfate and indoxyl sulfate were shown to predict 5-year mortality risks. After identifying the microbes and microbial enzymes involved in the generation of these uremic toxins, we used bioengineering technologies coupled with colonization of germ-free mice to show that the gut microbial genes that generate p-cresol and indole are sufficient to confer p-cresol sulfate and indoxyl sulfate formation, and a pro-thrombotic phenotype in vivo. The findings and tools developed serve as a critical step in both the study and targeting of these gut microbial pathways in vivo.
RESUMEN
In this study, we aimed to understand the potential role of the gut microbiome in the development of Alzheimer's disease (AD). We took a multi-faceted approach to investigate this relationship. Urine metabolomics were examined in individuals with AD and controls, revealing decreased formate and fumarate concentrations in AD. Additionally, we utilized whole-genome sequencing (WGS) data obtained from a separate group of individuals with AD and controls. This information allowed us to create and investigate host-microbiome personalized models. Notably, AD individuals displayed diminished formate microbial secretion in these models. Additionally, we identified specific reactions responsible for the production of formate in the host, and interestingly, these reactions were linked to genes that have correlations with AD. This study suggests formate as a possible early AD marker and highlights genetic and microbiome contributions to its production. The reduced formate secretion and its genetic associations point to a complex connection between gut microbiota and AD. This holistic understanding might pave the way for novel diagnostic and therapeutic avenues in AD management.
RESUMEN
Soluble human lectins are critical components of innate immunity. Genetic models suggest that lectins influence host-resident microbiota, but their specificity for commensal and mutualist species is understudied. Elucidating lectins' roles in regulating microbiota requires an understanding of which microbial species they bind within native communities. To profile human lectin recognition, we developed Lectin-Seq. We apply Lectin-Seq to human fecal microbiota using the soluble mannose-binding lectin (MBL) and intelectin-1 (hItln1). Although each lectin binds a substantial percentage of the samples (10 to 20%), the microbial interactomes of MBL and hItln1 differ markedly in composition and diversity. MBL binding is highly selective for a small subset of species commonly associated with humans. In contrast, hItln1's interaction profile encompasses a broad range of lower-abundance species. Our data uncover stark differences in the commensal recognition properties of human lectins.
Asunto(s)
Inmunidad Innata , Lectinas , Humanos , Lectinas/genéticaRESUMEN
The microbes and microbial pathways that influence host inflammatory disease progression remain largely undefined. Here, we show that variation in atherosclerosis burden is partially driven by gut microbiota and is associated with circulating levels of uric acid (UA) in mice and humans. We identify gut bacterial taxa spanning multiple phyla, including Bacillota, Fusobacteriota, and Pseudomonadota, that use multiple purines, including UA as carbon and energy sources anaerobically. We identify a gene cluster that encodes key steps of anaerobic purine degradation and that is widely distributed among gut-dwelling bacteria. Furthermore, we show that colonization of gnotobiotic mice with purine-degrading bacteria modulates levels of UA and other purines in the gut and systemically. Thus, gut microbes are important drivers of host global purine homeostasis and serum UA levels, and gut bacterial catabolism of purines may represent a mechanism by which gut bacteria influence health.
Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Ratones , Homeostasis , Purinas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Ácido Úrico/metabolismoRESUMEN
Dietary fiber consumption has been linked with improved cardiometabolic health, however, human studies have reported large interindividual variations in the observed benefits. We tested whether the effects of dietary fiber on atherosclerosis are influenced by the gut microbiome. We colonized germ-free ApoE-/- mice with fecal samples from three human donors (DonA, DonB, and DonC) and fed them diets supplemented with either a mix of 5 fermentable fibers (FF) or non-fermentable cellulose control (CC) diet. We found that DonA-colonized mice had reduced atherosclerosis burden with FF feeding compared to their CC-fed counterparts, whereas the type of fiber did not affect atherosclerosis in mice colonized with microbiota from the other donors. Microbial shifts associated with FF feeding in DonA mice were characterized by higher relative abundances of butyrate-producing taxa, higher butyrate levels, and enrichment of genes involved in synthesis of B vitamins. Our results suggest that atheroprotection in response to FF is not universal and is influenced by the gut microbiome.