Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Mater Horiz ; 8(5): 1446-1453, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846452

RESUMEN

Cadmium cyanide, Cd(CN)2, is a flexible coordination polymer best studied for its strong and isotropic negative thermal expansion (NTE) effect. Here we show that this NTE is actually X-ray-exposure dependent: Cd(CN)2 contracts not only on heating but also on irradiation by X-rays. This behaviour contrasts that observed in other beam-sensitive materials, for which X-ray exposure drives lattice expansion. We call this effect 'negative X-ray expansion' (NXE) and suggest its origin involves an interaction between X-rays and cyanide 'flips'; in particular, we rule out local heating as a possible mechanism. Irradiation also affects the nature of a low-temperature phase transition. Our analysis resolves discrepancies in NTE coefficients reported previously on the basis of X-ray diffraction measurements, and we establish the 'true' NTE behaviour of Cd(CN)2 across the temperature range 150-750 K. The interplay between irradiation and mechanical response in Cd(CN)2 highlights the potential for exploiting X-ray exposure in the design of functional materials.

2.
Chem Sci ; 12(12): 4494-4502, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-34163714

RESUMEN

Control over the spatial distribution of components in metal-organic frameworks has potential to unlock improved performance and new behaviour in separations, sensing and catalysis. We report an unprecedented single-step synthesis of multi-component metal-organic framework (MOF) nanoparticles based on the canonical ZIF-8 (Zn) system and its Cd analogue, which form with a core-shell structure whose internal interface can be systematically tuned. We use scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and a new composition gradient model to fit high-resolution X-ray diffraction data to show how core-shell composition and interface characteristics are intricately controlled by synthesis temperature and reaction composition. Particle formation is investigated by in situ X-ray diffraction, which reveals that the spatial distribution of components evolves with time and is determined by the interplay of phase stability, crystallisation kinetics and diffusion. This work opens up new possibilities for the control and characterisation of functionality, component distribution and interfaces in MOF-based materials.

3.
Faraday Discuss ; 225(0): 241-254, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33089859

RESUMEN

The existence of correlated disorder in molecular frameworks is an obvious mechanism by which unusual cooperative phenomena might be realised. We show that the use of local-symmetry lowering approaches can allow ostensibly high-symmetry framework structures to harbour exotic disordered states often studied in the context of spin lattice models. These states exhibit strongly cooperative behaviour that might be exploited in anomalous mechanical, host/guest, and information storage behaviour. Our contribution focuses in particular on the concepts of (i) combinatorial mechanics, (ii) adaptive flexibility, and (iii) error-correcting data storage in framework materials.

4.
Chem Commun (Camb) ; 54(69): 9651-9654, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30101236

RESUMEN

We study the structural and thermomechanical effects of cation substitution in the compositional family of metal-organic frameworks Zn1-xCdx(mIm)2 (HmIm = 2-methylimidazole). We find complete miscibility for all compositions x, with evidence of inhomogeneous distributions of Cd and Zn that in turn affect framework aperture characteristics. Using variable-temperature X-ray powder diffraction measurements, we show that Cd substitution drives a threefold reduction in the magnitude of thermal expansion behaviour. We interpret this effect in terms of an increased density of negative thermal expansion modes in the more flexible Cd-rich frameworks.

5.
Chem Commun (Camb) ; 53(81): 11233-11236, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28956886

RESUMEN

We report the synthesis and structural characterisation of three mixed-metal formate perovskite families [C(NH2)3]CuxM1-x(HCOO)3 (M = Mn, Zn, Mg). Using a combination of infrared spectroscopy, non-negative matrix factorization, and reverse Monte Carlo refinement, we show that the Mn- and Zn-containing compounds support compositional nanodomains resembling the polar nanoregions of conventional relaxor ferroelectrics. The M = Mg family exhibits a miscibility gap that we suggest reflects the limiting behaviour of nanodomain formation.

6.
J Am Chem Soc ; 138(30): 9393-6, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27414161

RESUMEN

We study the compositional dependence of molecular orientation (multipolar) and orbital (quadrupolar) order in the perovskite-like metal-organic frameworks [C(NH2)3]CuxCd1-x(HCOO)3. Upon increasing the fraction x of Jahn-Teller-active Cu(2+), we observe an orbital disorder/order transition and a multipolar reorientation transition, each occurring at distinct critical compositions xo = 0.45(5) and xm = 0.55(5). We attribute these transitions to a combination of size, charge distribution, and percolation effects. Our results establish the accessibility in formate perovskites of novel structural degrees of freedom beyond the familiar dipolar terms responsible for (anti)ferroelectric order. We discuss the implications of cooperative quadrupolar and multipolar states for the design of relaxor-like hybrid perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA