Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Respir Physiol Neurobiol ; 316: 104118, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37460077

RESUMEN

Chronic hypoxia (CH) from birth attenuates the acute hypoxic ventilatory response (HVR) in rats and other mammals, but CH is often reported to augment the HVR in adult mammals. To test the hypothesis that this transition - from blunting to augmenting the HVR - occurs in the third or fourth postnatal week in rats, juvenile and adult rats were exposed to normobaric CH (12% O2) for 7 days and the HVR was assessed by whole-body plethysmography. No transition was observed, however, and the acute HVR was reduced by 61 - 85% across all ages studied. The failure to observe an augmented HVR in adult rats could not be explained by the substrain of Sprague Dawley rats used, the duration of the CH exposure, the order in which test gases were presented, the level of hypoxia used for CH and to assess the HVR, or the effects of CH on the metabolic response to hypoxia and the hypercapnic ventilatory response. A literature survey revealed several distinct patterns of ventilatory acclimatization to hypoxia (VAH) in adult rats, with most studies (77%) revealing a decrease or no change in the acute HVR after CH. In conclusion, the effects of CH on respiratory control are qualitatively similar across age groups, at least within the populations of Sprague Dawley rats used in the present study, and there does not appear to be one "typical" pattern for VAH in adult rats.


Asunto(s)
Hipoxia , Ventilación Pulmonar , Animales , Ratas , Ventilación Pulmonar/fisiología , Ratas Sprague-Dawley , Hipoxia/metabolismo , Pletismografía Total , Mamíferos
2.
Respir Physiol Neurobiol ; 307: 103973, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36180019

RESUMEN

Newborn mammals exhibit biphasic hypoxic ventilatory responses (HVR) characterized by an initial increase in ventilation and a secondary ventilatory depression. The magnitude of the hypoxic ventilatory decline (HVD) in the late phase of the HVR normally decreases with age, but this occurs sooner in rats reared in 60% O2. We investigated whether a lower level of hyperoxia (30% O2) or a short period of recovery (1 or 3 d in 21% O2) would affect the expression of this plasticity. Similar to 60% O2, rat pups reared in 30% O2 until 3-4 days of age exhibited a less biphasic HVR to 12% O2. When pups reared in 60% O2 were returned to normoxia, the magnitude of HVD increased such that pups expressed a biphasic HVR appropriate for their chronological age. Blocking synaptic input from the carotid bodies revealed that CNS hypoxia depressed ventilation less in hyperoxia-reared rats immediately following hyperoxia and after 1 d in normoxia despite recovery of the biphasic HVR. This suggests that recovery of the biphasic HVR occurs in pathways regulating HVD that depend on carotid body activity. The early, carotid body-mediated phase of the HVR was also blunted immediately and 1 d after the hyperoxia exposure, but not after 3 d of recovery. These data confirm that short exposures to mild-to-moderate hyperoxia elicit developmental plasticity in the HVR. However, reemergence of the biphasic HVR after return to normoxia argues against a heterokairic process for the premature transition from biphasic HVR to sustained HVR in hyperoxia-reared rat pups.


Asunto(s)
Hiperoxia , Ratas , Animales , Animales Recién Nacidos , Ventilación Pulmonar/fisiología , Ratas Sprague-Dawley , Hipoxia , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA