Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Adv ; 5(10): eaax8227, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31692789

RESUMEN

Complex molecules from crude oil, such as asphaltenes, can adsorb onto oil/water interfaces. This creates a viscoelastic network that may cause difficulties in oil recovery and oil spills. In addition to stabilization of oil/water emulsions, they may also cause the spontaneous formation of micron-sized droplets. Here, we investigate spontaneous emulsification in the presence of asphaltenes, probing parameters that may affect this phenomenon by observing isolated drops of water immersed in asphaltene/hydrocarbon solutions within a co-flow microfluidic device. The results indicate that the initial internal pressure of the drop strongly influences the rate at which the drop will shrink due to spontaneous emulsification. In addition, the viscoelastic skin formation by the asphaltenes inhibits increases in this pressure that normally accompanies a decrease in drop radius. Understanding this spontaneous emulsification has implications not only for the oil industry, but also to the cosmetics, foods, medical, and pharmaceutical industries.

2.
Soft Matter ; 15(30): 6200-6206, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31328760

RESUMEN

Hydrophobically modified polymers are good candidates for the stabilization of liquid interfaces thanks to the high anchoring energy of the hydrophobic parts. In this article we probe the interfacial anchoring of a series of home-made hydrophobically modified polymers with controlled degree of grafting by studying their behavior upon large area dilations and compressions. By comparing the measured interfacial tension to the one that we expect in the case of a constant number of adsorbed monomers, we are able to deduce whether desorption or adsorption occurs during area variations. We find that the polymer chains with the longest hydrophobic grafts desorb at larger compressions compared to the polymers with the shortest grafts, because of their larger desorption energy. Furthermore, for a given graft length, we observe more desorption for polymers with the highest grafting densities. We attribute this counter intuitive result to the fact that at high grafting densities, the length of the polymer loops is shorter, and hence the elastic penalty upon compression is larger for these layers, leading to a faster desorption. Comparing the elastic penalty to thermal energy, kBT, enables deducing a critical grafting density above which desorption of grafts is expected upon compression, which is consistent with our experimental results. In the case of large area dilations, the experiments reveal that the number of adsorbed anchors remains constant in the case of chains with a low grafting density while chains with the highest degree of grafting seem to show some degree of adsorption during the dilatation. Therefore, in these highly grafted chains there may be unadsorbed grafts remaining in the vicinity of the interface, which may adsorb quickly at the interface upon dilatation.

3.
Eur Phys J E Soft Matter ; 41(9): 101, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30182262

RESUMEN

Using surface-tension measurements, we study the brush-limited adsorption dynamics of a range of amphiphilic polymers, PAAH-[Formula: see text]-[Formula: see text] composed of a poly(acrylic acid) backbone, PAAH, grafted with a fraction [Formula: see text] of alkyl moieties, containing either n = 8 or n = 12 carbon atoms, at pH conditions where the PAAH backbone is not charged. At short times, the surface tension decreases more sharply as the degree of grafting increases, while, at long times, the adsorption dynamics becomes logarithmic in time and is slower as the degree of grafting increases. This logarithmic behavior at long times indicates the building of a free-energy barrier which grows over time. To account for the observed surface tension evolution with the degree of grafting we propose a scenario, where the free-energy barrier results from both the deformation of the incoming polymer coils and the deformation of the adsorbed brush. Our model involves only two fitting parameters, the monomer size and the area needed for one molecule during adsorption and is in agreement with the experimental data. We obtain a reasonable value for the monomer size and find an area per adsorbed polymer chain of the order of 1 nm2, showing that the polymer chains are strongly stretched as they adsorb.

4.
J Colloid Interface Sci ; 354(1): 359-63, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21094494

RESUMEN

As shown by Landau, Levich and Derjaguin, a plate withdrawn out of a wetting bath at low capillary numbers deforms the very top of the liquid reservoir. At this place, a dynamic meniscus forms, whose shape and curvature select the thickness of the film entrained by the plate. In this paper, we measure accurately the thickness of the entrained film by reflectometry, and characterize the dynamic meniscus, which is found to decay exponentially towards the film. We show how this shape is modified when reversing the motion: as a plate penetrates the bath, the dynamic meniscus can "buckle" and present a stationary wavy profile, which we discuss.

5.
J Phys Condens Matter ; 21(46): 464127, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21715891

RESUMEN

We report the influence of the nature of boundaries on the dynamics of wetting. We review some work recently published and highlight new experimental observations. Our paper begins with the spreading of drops on substrates and demonstrates how the exponents of the spreading laws are affected either by the surface chemistry or by the droplet shape. We then discuss the imbibition of completely and partially wetting fluids into channels and over microtextured surfaces. Starting with the one-dimensional imbibition of completely wetting liquids in tubes and surface textures, we show that (i) shape variations of channels change the power-law response of the imbibition and (ii) the geometrical parameters of a surface roughness change the spreading behavior. For partially wetting fluids, we observe directionally dependent spreading: polygonal wetted domains can be obtained. We conclude with a tabular summary of our findings, allowing us to draw connections between the different systems investigated, and shed light on open questions that remain to be addressed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA