Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Adv Biochem Eng Biotechnol ; 182: 83-113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35091814

RESUMEN

The interaction of the human user with equipment and software is a central aspect of the work in the life science laboratory. The enhancement of the usability and intuition of software and hardware products, as well as holistic interaction solutions are a demand from all stakeholders in the scientific laboratory who desire more efficient workflows. Shorter training periods, parallelization of workflows, improved data integrity, and enhanced safety are only a few advantages innovative intuitive human-device-interfaces can bring. With recent advances in artificial intelligence (AI), the availability of smart devices, as well as unified communication protocols, holistic interaction solutions are on the rise. Future interaction in the laboratory will not be limited to pushing mechanical buttons on equipment. Instead, the interplay between voice, gestures, and innovative hard- and software components will drive interactions in the laboratory into a more streamlined future.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Interfaz Usuario-Computador , Inteligencia Artificial , Humanos , Programas Informáticos
2.
Stud Health Technol Inform ; 283: 59-68, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34545820

RESUMEN

INTRODUCTION: Ensuring scientific reproducibility and compliance with documentation guidelines of funding bodies and journals is a topic of greatly increasing importance in biomedical research. Failure to comply, or unawareness of documentation standards can have adverse effects on the translation of research into patient treatments, as well as economic implications. In the context of the German Research Foundation-funded collaborative research center (CRC) 1002, an IT-infrastructure sub-project was designed. Its goal has been to establish standardized metadata documentation and information exchange benefitting the participating research groups with minimal additional documentation efforts. METHODS: Implementation of the self-developed menoci-based research data platform (RDP) was driven by close communication and collaboration with researchers as early adopters and experts. Requirements analysis and concept development involved in person observation of experimental procedures, interviews and collaboration with researchers and experts, as well as the investigation of available and applicable metadata standards and tools. The Drupal-based RDP features distinct modules for the different documented data and workflow types, and both the development and the types of collected metadata were continuously reviewed and evaluated with the early adopters. RESULTS: The menoci-based RDP allows for standardized documentation, sharing and cross-referencing of different data types, workflows, and scientific publications. Different modules have been implemented for specific data types and workflows, allowing for the enrichment of entries with specific metadata and linking to further relevant entries in different modules. DISCUSSION: Taking the workflows and datasets of the frequently involved experimental service projects as a starting point for (meta-)data types to overcome irreproducibility of research data, results in increased benefits for researchers with minimized efforts. While the menoci-based RDP with its data models and metadata schema was originally developed in a cardiological context, it has been implemented and extended to other consortia at GÃuttingen Campus and beyond in different life science research areas.


Asunto(s)
Investigación Biomédica , Metadatos , Documentación , Humanos , Reproducibilidad de los Resultados , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA