Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Anim Breed Genet ; 141(3): 328-342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38152994

RESUMEN

Selection and breeding strategies to improve resistance to enteropathies are essential to reaching the sustainability of the rabbit production systems. However, disease heterogeneity (having only as major visible symptom diarrhoea) and low disease heritability are two barriers for the implementation of these strategies. Diarrhoea condition can affect rabbits at different life stages, starting from the suckling period, with large negative economic impacts. In this study, from a commercial population of suckling rabbits (derived from 133 litters) that experienced an outbreak of enteropathy, we first selected a few animals that died with severe symptoms of diarrhoea and characterized their microbiota, using 16S rRNA gene sequencing data. Clostridium genus was consistently present in all affected specimens. In addition, with the aim to identify genetic markers in the rabbit genome that could be used as selection tools, we performed genome-wide association studies for symptoms of diarrhoea in the same commercial rabbit population. These studies were also complemented with FST analyses between the same groups of rabbits. A total of 332 suckling rabbits (151 with severe symptoms of diarrhoea, 42 with mild symptoms and 129 without any symptoms till the weaning period), derived from 45 different litters (a subset of the 133 litters) were genotyped with the Affymetrix Axiom OrcunSNP Array. In both genomic approaches, rabbits within litters were paired to constitute two groups (susceptible and resistant, including the mildly affected in one or the other group) and run case and control genome-wide association analyses. Genomic heritability estimated in the designed experimental structure integrated in a commercial breeding scheme was 0.19-0.21 (s.e. 0.09-0.10). A total of eight genomic regions on rabbit chromosome 2 (OCU2), OCU3, OCU7, OCU12, OCU13, OCU16 and in an unassembled scaffold had significant single nucleotide polymorphisms (SNPs) and/or markers that trespassed the FST percentile distribution. Among these regions, three main peaks of SNPs were identified on OCU12, OCU13 and OCU16. The QTL region on OCU13 encompasses several genes that encode members of a family of immunoglobulin Fc receptors (FCER1G, FCRLA, FCRLB and FCGR2A) involved in the immune innate system, which might be important candidate genes for this pathogenic condition. The results obtained in this study demonstrated that resistance to an enteropathy occurring in suckling rabbits is in part genetically determined and can be dissected at the genomic level, providing DNA markers that could be used in breeding programmes to increase resistance to enteropathies in meat rabbits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Genoma , Conejos , Animales , Estudio de Asociación del Genoma Completo/veterinaria , ARN Ribosómico 16S , Genómica , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Diarrea/genética , Diarrea/veterinaria
2.
Genet Sel Evol ; 55(1): 88, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062367

RESUMEN

BACKGROUND: Intense selection of modern pig breeds has resulted in genetic improvement of production traits while the performance of local pig breeds has remained lower. As local pig breeds have been bred in extensive systems, they have adapted to specific environmental conditions, resulting in a rich genotypic and phenotypic diversity. This study is based on European local pig breeds that have been genetically characterized using DNA-pool sequencing data and phenotypically characterized using breed level phenotypes related to stature, fatness, growth, and reproductive performance traits. These data were analyzed using a dedicated approach to detect signatures of selection linked to phenotypic traits in order to uncover potential candidate genes that may underlie adaptation to specific environments. RESULTS: Analysis of the genetic data of European pig breeds revealed four main axes of genetic variation represented by the Iberian and three modern breeds (i.e. Large White, Landrace, and Duroc). In addition, breeds clustered according to their geographical origin, for example French Gascon and Basque breeds, Italian Apulo Calabrese and Casertana breeds, Spanish Iberian, and Portuguese Alentejano breeds. Principal component analysis of the phenotypic data distinguished the larger and leaner breeds with better growth potential and reproductive performance from the smaller and fatter breeds with low growth and reproductive efficiency. Linking the signatures of selection with phenotype identified 16 significant genomic regions associated with stature, 24 with fatness, 2 with growth, and 192 with reproduction. Among them, several regions contained candidate genes with possible biological effects on stature, fatness, growth, and reproductive performance traits. For example, strong associations were found for stature in two regions containing, respectively, the ANXA4 and ANTXR1 genes, for fatness in a region containing the DNMT3A and POMC genes and for reproductive performance in a region containing the HSD17B7 gene. CONCLUSIONS: In this study on European local pig breeds, we used a dedicated approach for detecting signatures of selection that were supported by phenotypic data at the breed level to identify potential candidate genes that may have adapted to different living environments and production systems.


Asunto(s)
Genoma , Genómica , Porcinos/genética , Animales , Fenotipo , Genotipo , Genómica/métodos , Análisis de Secuencia de ADN
3.
Animals (Basel) ; 13(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37889646

RESUMEN

The Greek Black Pig (or Greek Pig) is the only recognized autochthonous pig breed raised in Greece, usually in extensive or semi-extensive production systems. According to its name, the characteristic breed coat color is solid black. In this study, with the aim to start a systematic genetic characterization of the Greek Black Pig breed, we investigated polymorphisms in major genes well known to affect exterior and production traits (MC1R, KIT, NR6A1, VRTN and IGF2) and compared these data with population genetic information available in other Mediterranean and Western Balkan pig breeds and wild boars. None of the investigated gene markers were fixed for one allele, suggesting that, in the past, this breed experienced introgression from wild boars and admixture from cosmopolitan pig breeds, enriching the breed genetic pool that should be further investigated to design appropriate conservation genetic strategies. We identified a new MC1R allele, containing two missense mutations already reported in two other independent alleles, but here present in the same haplotype. This allele might be useful to disclose biological information that can lead to better understanding the cascade transmission of signals to produce melanin pigments. This study demonstrated that autochthonous genetic resources can be an interesting reservoir of unexpected genetic variants.

4.
Sci Rep ; 13(1): 13635, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604894

RESUMEN

Palaeogenomics is contributing to refine our understanding of many major evolutionary events at an unprecedented resolution, with relevant impacts in several fields, including phylogenetics of extinct species. Few extant and extinct animal species from Mediterranean regions have been characterised at the DNA level thus far. The Sardinian pika, Prolagus sardus (Wagner, 1829), was an iconic lagomorph species that populated Sardinia and Corsica and became extinct during the Holocene. There is a certain scientific debate on the phylogenetic assignment of the extinct genus Prolagus to the family Ochotonidae (one of the only two extant families of the order Lagomorpha) or to a separated family Prolagidae, or to the subfamily Prolaginae within the family Ochotonidae. In this study, we successfully reconstructed a portion of the mitogenome of a Sardinian pika dated to the Neolithic period and recovered from the Cabaddaris cave, an archaeological site in Sardinia. Our calibrated phylogeny may support the hypothesis that the genus Prolagus is an independent sister group to the family Ochotonidae that diverged from the Ochotona genus lineage about 30 million years ago. These results may contribute to refine the phylogenetic interpretation of the morphological peculiarities of the Prolagus genus already described by palaeontological studies.


Asunto(s)
ADN Antiguo , Lagomorpha , Animales , Filogenia , Evolución Biológica , Arqueología
5.
Anim Genet ; 54(4): 510-525, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37194440

RESUMEN

The domestic canary (Serinus canaria) is one of the most common pet birds and has been extensively selected and bred over the last few centuries to constitute many different varieties. Plumage pigmentation is one of the main phenotypic traits that distinguish canary breeds and lines. Feather colours in these birds, similarly to other avian species, are mainly depended on the presence of two major types of pigments: carotenoids and melanins. In this study, we exploited whole genome sequencing (WGS) datasets produced from five canary lines or populations (Black Frosted Yellow, Opal, Onyx, Opal × Onyx and Mogno, some of which carrying different putative dilute alleles), complemented with other WGS datasets retrieved from previous studies, to identify candidate genes that might explain pigmentation variability across canary breeds and varieties. Sequencing data were obtained using a DNA pool-seq approach and genomic data were compared using window-based FST analyses. We identified signatures of selection in genomic regions harbouring genes involved in carotenoid-derived pigmentation variants (CYP2J19, EDC, BCO2 and SCARB1), confirming the results reported by previous works, and identified several other signatures of selection in the correspondence of melanogenesis-related genes (AGRP, ASIP, DCT, EDNRB, KITLG, MITF, MLPH, SLC45A2, TYRP1 and ZEB2). Two putative causative mutations were identified in the MLPH gene that may explain the Opal and Onyx dilute mutant alleles. Other signatures of selection were also identified that might explain additional phenotypic differences between the investigated canary populations.


Asunto(s)
Canarios , Pigmentación , Animales , Canarios/genética , Color , Mutación , Pigmentación/genética , Carotenoides , Alelos , Secuenciación Completa del Genoma/veterinaria
6.
Genes (Basel) ; 14(4)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37107597

RESUMEN

The gilthead seabream (Sparus aurata) is a species of relevance for the Mediterranean aquaculture industry. Despite the advancement of genetic tools for the species, breeding programs still do not often include genomics. In this study, we designed a genomic strategy to identify signatures of selection and genomic regions of high differentiation among populations of farmed fish stocks. A comparative DNA pooling sequencing approach was applied to identify signatures of selection in gilthead seabream from the same hatchery and from different nuclei that had not been subjected to genetic selection. Identified genomic regions were further investigated to detect SNPs with predicted high impact. The analyses underlined major genomic differences in the proportion of fixed alleles among the investigated nuclei. Some of these differences highlighted genomic regions, including genes involved in general metabolism and development already detected in QTL for growth, size, skeletal deformity, and adaptation to variation of oxygen levels in other teleosts. The obtained results pointed out the need to control the genetic effect of breeding programs in this species to avoid the reduction of genetic variability within populations and the increase in inbreeding level that, in turn, might lead to an increased frequency of alleles with deleterious effects.


Asunto(s)
Dorada , Animales , Dorada/genética , Acuicultura , Genómica , Secuenciación Completa del Genoma
7.
Sci Rep ; 12(1): 19541, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36379985

RESUMEN

Awareness has been raised over the last years on the genetic integrity of autochthonous honey bee subspecies. Genomic tools available in Apis mellifera can make it possible to measure this information by targeting individual honey bee DNA. Honey contains DNA traces from all organisms that contributed or were involved in its production steps, including the honey bees of the colony. In this study, we designed and tested a genotyping by sequencing (GBS) assay to analyse single nucleotide polymorphisms (SNPs) of A. mellifera nuclear genome using environmental DNA extracted from honey. A total of 121 SNPs (97 SNPs informative for honey bee subspecies identification and 24 SNPs associated with relevant traits of the colonies) were used in the assay to genotype honey DNA, which derives from thousands of honey bees. Results were integrated with information derived from previous studies and whole genome resequencing datasets. This GBS method is highly reliable in estimating honey bee SNP allele frequencies of the whole colony from which the honey derived. This assay can be used to identify the honey bee subspecies of the colony that produced the honey and, in turn, to authenticate the entomological origin of the honey.


Asunto(s)
ADN Ambiental , Miel , Abejas/genética , Animales , Genotipo , Metagenómica , ADN
8.
Vet Sci ; 9(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622741

RESUMEN

Environmental DNA (eDNA) contained in honey derives from the organisms that directly and indirectly have been involved in the production process of this matrix and that have played a role in the hive ecosystems where the honey has been produced. In this study we set up PCR-based assays to detect the presence of DNA traces left in the honey by two damaging honey bee pests: the small hive beetle (Aethina tumida) and the greater wax moth (Galleria mellonella). DNA was extracted from 82 honey samples produced in Italy and amplified using two specific primer pairs that target the mitochondrial gene cytochrome oxidase I (COI) of A. tumida and two specific primer pairs that target the same gene in G. mellonella. The limit of detection was tested using sequential dilutions of the pest DNA. Only one honey sample produced in Calabria was positive for A. tumida whereas about 66% of all samples were positively amplified for G. mellonella. The use of honey eDNA could be important to establish early and effective measures to contain at the local (e.g., apiary) or regional scales these two damaging pests and, particularly for the small hive beetle, to prevent its widespread diffusion.

9.
Sci Rep ; 12(1): 7346, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513520

RESUMEN

Preserving diversity of indigenous pig (Sus scrofa) breeds is a key factor to (i) sustain the pork chain (both at local and global scales) including the production of high-quality branded products, (ii) enrich the animal biobanking and (iii) progress conservation policies. Single nucleotide polymorphism (SNP) chips offer the opportunity for whole-genome comparisons among individuals and breeds. Animals from twenty European local pigs breeds, reared in nine countries (Croatia: Black Slavonian, Turopolje; France: Basque, Gascon; Germany: Schwabisch-Hällisches Schwein; Italy: Apulo Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda; Lithuania: Indigenous Wattle, White Old Type; Portugal: Alentejana, Bísara; Serbia: Moravka, Swallow-Bellied Mangalitsa; Slovenia: Krskopolje pig; Spain: Iberian, Majorcan Black), and three commercial breeds (Duroc, Landrace and Large White) were sampled and genotyped with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip. A dataset of 51 Wild Boars from nine countries was also added, summing up to 1186 pigs (~ 49 pigs/breed). The aim was to: (i) investigate individual admixture ancestries and (ii) assess breed traceability via discriminant analysis on principal components (DAPC). Albeit the mosaic of shared ancestries found for Nero Siciliano, Sarda and Moravka, admixture analysis indicated independent evolvement for the rest of the breeds. High prediction accuracy of DAPC mark SNP data as a reliable solution for the traceability of breed-specific pig products.


Asunto(s)
Bancos de Muestras Biológicas , Polimorfismo de Nucleótido Simple , Animales , Genoma , Fitomejoramiento , Sus scrofa/genética , Porcinos/genética
10.
J Anim Breed Genet ; 139(3): 307-319, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34841617

RESUMEN

Autochthonous cattle breeds are genetic resources that, in many cases, have been fixed for inheritable exterior phenotypes useful to understand the genetic mechanisms affecting these breed-specific traits. Reggiana and Modenese are two closely related autochthonous cattle breeds mainly raised in the production area of the well-known Protected Designation of Origin Parmigiano-Reggiano cheese, in the North of Italy. These breeds can be mainly distinguished for their standard coat colour: solid red in Reggiana and solid white with pale shades of grey in Modenese. In this study we genotyped with the GeneSeek GGP Bovine 150k single nucleotide polymorphism (SNP) chip almost half of the extant cattle populations of Reggiana (n = 1109 and Modenese (n = 326) and used genome-wide information in comparative FST analyses to detect signatures of selection that diverge between these two autochthonous breeds. The two breeds could be clearly distinguished using multidimensional scaling plots and admixture analysis. Considering the top 0.0005% FST values, a total of 64 markers were detected in the single-marker analysis. The top FST value was detected for the melanocortin 1 receptor (MC1R) gene mutation, which determines the red coat colour of the Reggiana breed. Another coat colour gene, agouti signalling protein (ASIP), emerged amongst this list of top SNPs. These results were also confirmed with the window-based analyses, which included 0.5-Mb or 1-Mb genome regions. As variability affecting ASIP has been associated with white coat colour in sheep and goats, these results highlighted this gene as a strong candidate affecting coat colour in Modenese breed. This study demonstrates how population genomic approaches designed to take advantage from the diversity between local genetic resources could provide interesting hints to explain exterior traits not yet completely investigated in cattle.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Color , Genotipo , Italia , Fenotipo , Ovinos/genética
11.
J Dairy Sci ; 105(3): 2408-2425, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34955250

RESUMEN

Reggiana and Modenese are autochthonous cattle breeds, reared in the North of Italy, that can be mainly distinguished for their standard coat color (Reggiana is red, whereas Modenese is white with some pale gray shades). Almost all milk produced by these breeds is transformed into 2 mono-breed branded Parmigiano-Reggiano cheeses, from which farmers receive the economic incomes needed for the sustainable conservation of these animal genetic resources. After the setting up of their herd books in 1960s, these breeds experienced a strong reduction in the population size that was subsequently reverted starting in the 1990s (Reggiana) or more recently (Modenese) reaching at present a total of about 2,800 and 500 registered cows, respectively. Due to the small population size of these breeds, inbreeding is a very important cause of concern for their conservation programs. Inbreeding is traditionally estimated using pedigree data, which are summarized in an inbreeding coefficient calculated at the individual level (FPED). However, incompleteness of pedigree information and registration errors can affect the effectiveness of conservation strategies. High-throughput SNP genotyping platforms allow investigation of inbreeding using genome information that can overcome the limits of pedigree data. Several approaches have been proposed to estimate genomic inbreeding, with the use of runs of homozygosity (ROH) considered to be the more appropriate. In this study, several pedigree and genomic inbreeding parameters, calculated using the whole herd book populations or considering genotyping information (GeneSeek GGP Bovine 150K) from 1,684 Reggiana cattle and 323 Modenese cattle, were compared. Average inbreeding values per year were used to calculate effective population size. Reggiana breed had generally lower genomic inbreeding values than Modenese breed. The low correlation between pedigree-based and genomic-based parameters (ranging from 0.187 to 0.195 and 0.319 to 0.323 in the Reggiana and Modenese breeds, respectively) reflected the common problems of local populations in which pedigree records are not complete. The high proportion of short ROH over the total number of ROH indicates no major recent inbreeding events in both breeds. ROH islands spread over the genome of the 2 breeds (15 in Reggiana and 14 in Modenese) identified several signatures of selection. Some of these included genes affecting milk production traits, stature, body conformation traits (with a main ROH island in both breeds on BTA6 containing the ABCG2, NCAPG, and LCORL genes) and coat color (on BTA13 in Modenese containing the ASIP gene). In conclusion, this work provides an extensive comparative analysis of pedigree and genomic inbreeding parameters and relevant genomic information that will be useful in the conservation strategies of these 2 iconic local cattle breeds.


Asunto(s)
Endogamia , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Femenino , Genotipo , Homocigoto , Islas , Italia
12.
Insects ; 12(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34680637

RESUMEN

The complementary sex determiner (csd) gene plays an essential role in the sex determination of Apis mellifera L. Females develop only if fertilized eggs have functional heterozygous genotypes at this gene whereas males, being haploids, are hemizygous. Two identical csd alleles produce non vital males. In light of the recent decline in honey bee populations, it is therefore important to monitor the allele variability at this gene. In this study, we tested the application of next generation semiconductor-based sequencing technology (Ion Torrent) coupled with environmental honey DNA as a source of honey bee genome information to retrieve massive sequencing data for the analysis of variability at the hypervariable region (HVR) of the csd gene. DNA was extracted from 12 honey samples collected from honeycombs directly retrieved from 12 different colonies. A specifically designed bioinformatic pipeline, applied to analyze a total of about 1.5 million reads, identified a total of 160 different csd alleles, 55% of which were novel. The average number of alleles per sample was compatible with the number of expected patrilines per colony, according to the mating behavior of the queens. Allele diversity at the csd could also provide information useful to reconstruct the history of the honey.

13.
Insects ; 12(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34357280

RESUMEN

Growing interest has been emerging on the need to monitor the genetic integrity of the European Apis mellifera subspecies that could be threatened by the human-mediated dispersion of non-native populations and lines. Mitochondrial DNA (mtDNA) lineages can provide useful information for this purpose. In this study, we took advantage of the environmental DNA (eDNA) contained in the honey, which can be analyzed to detect the main groups of mitotypes of the honey bees that produced it. In this study, we applied this eDNA to produce a distribution map all over the Italian peninsula and the two major islands (Sicily and Sardinia) of the following three honey bee mtDNA lineages: A, C and M. A total of 607 georeferenced honey samples, produced in all Italian regions, was analyzed to detect these lineages. The A lineage was widespread in Sicily, as expected, considering that A. m. siciliana carries the African lineage. Surprisingly, this lineage was also reported in about 14% of all other samples produced in almost all continental regions, and in Sardinia. The applied method obtained an updated distribution map of honey bee mtDNA lineages that could be useful to design policies for the conservation of Italian honey bee genetic resources.

14.
J Invertebr Pathol ; 184: 107628, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34090931

RESUMEN

Lotmaria passim is a trypanosomatid that infects honey bees. In this study, we established an axenic culture of L. passim from Italian isolates and then used its DNA as a control in subsequent analyses that investigated environmental DNA (eDNA) to detect this trypasonosomatid. The source of eDNA was honey, which has been already demonstrated to be useful to detect honey bee parasites. DNA from a total of 164 honey samples collected in the North of Italy was amplified with three L. passim specific PCR primers and 78% of the analysed samples gave positive results. These results indicated a high prevalence rate of this trypanosomatid in the North of Italy, where it might be considered another threat to honey bee health.


Asunto(s)
Abejas/parasitología , ADN Ambiental/análisis , Miel/análisis , Trypanosomatina/aislamiento & purificación , Animales , Apicultura , Italia
15.
Animals (Basel) ; 11(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670521

RESUMEN

Mora Romagnola is an autochthonous pig breed, raised in the north of Italy. Mono-breed pork products of this breed are part of important niche value chain that is intrinsically linked to the conservation of this local genetic resources that can only survive due to the premium price that these products can obtain on the market. However, the added value attracts fraudsters that unscrupulously sell mis-labelled Mora Romagnola products, causing consumer distrust that, in turn, undermines the conservation strategy of this breed. To monitor and better characterise this local breed, we phenotyped 826 Mora Romagnola pigs for three breed-specific traits. Then, we genotyped almost all living sows and boars registered to the Herd Book (n. = 357 animals) for polymorphisms in the MC1R and NR6A1 genes (affecting coat colour and vertebral number, respectively). The results were used to re-define the breed descriptors of the Mora Romagnala breed that included information on the allowed genotypes at these two genes. A few pigs that did not carry the allowed genotypes were excluded from its Herd Book. Finally, we evaluated the usefulness of these DNA markers to authenticate Mora Romagnola meat against meat derived from other 11 pig breeds and wild boars. To our knowledge, the Mora Romagnola Herd Book is one of the first examples that established a direct link between a genetic standard of a breed with the possibility to authenticate mono-breed products using DNA markers with the specific purpose to combat frauds and, indirectly, support the conservation of a livestock genetic resource.

16.
Sci Rep ; 11(1): 3359, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564056

RESUMEN

Coronaviruses silently circulate in human and animal populations, causing mild to severe diseases. Therefore, livestock are important components of a "One Health" perspective aimed to control these viral infections. However, at present there is no example that considers pig genetic resources in this context. In this study, we investigated the variability of four genes (ACE2, ANPEP and DPP4 encoding for host receptors of the viral spike proteins and TMPRSS2 encoding for a host proteinase) in 23 European (19 autochthonous and three commercial breeds and one wild boar population) and two Asian Sus scrofa populations. A total of 2229 variants were identified in the four candidate genes: 26% of them were not previously described; 29 variants affected the protein sequence and might potentially interact with the infection mechanisms. The results coming from this work are a first step towards a "One Health" perspective that should consider conservation programs of pig genetic resources with twofold objectives: (i) genetic resources could be reservoirs of host gene variability useful to design selection programs to increase resistance to coronaviruses; (ii) the described variability in genes involved in coronavirus infections across many different pig populations might be part of a risk assessment including pig genetic resources.


Asunto(s)
Infecciones por Coronavirus/genética , Variación Genética , Sus scrofa/genética , Enzima Convertidora de Angiotensina 2/genética , Animales , Cruzamiento , Antígenos CD13/genética , Dipeptidil Peptidasa 4/genética , Frecuencia de los Genes , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL , Salud Única , Polimorfismo de Nucleótido Simple , Receptores Virales/genética , Serina Endopeptidasas/genética , Porcinos , Secuenciación Completa del Genoma
17.
Vet Sci ; 7(3)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824137

RESUMEN

Environmental DNA (eDNA) has been proposed as a powerful tool to detect and monitor cryptic, elusive, or invasive organisms. We recently demonstrated that honey constitutes an easily accessible source of eDNA. In this study, we extracted DNA from 102 honey samples (74 from Italy and 28 from 17 other countries of all continents) and tested the presence of DNA of nine honey bee pathogens and parasites (Paenibacillus larvae, Melissococcus plutonius, Nosema apis, Nosema ceranae, Ascosphaera apis,Lotmaria passim, Acarapis woodi, Varroa destructor, and Tropilaelaps spp.) using qualitative PCR assays. All honey samples contained DNA from V. destructor, confirming the widespread diffusion of this mite. None of the samples gave positive amplifications for N. apis, A. woodi, and Tropilaelaps spp. M. plutonius was detected in 87% of the samples, whereas the other pathogens were detected in 43% to 57% of all samples. The frequency of Italian samples positive for P. larvae was significantly lower (49%) than in all other countries (79%). The co-occurrence of positive samples for L. passim and A. apis with N. ceranae was significant. This study demonstrated that honey eDNA can be useful to establish monitoring tools to evaluate the sanitary status of honey bee populations.

18.
Sci Rep ; 10(1): 9279, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518251

RESUMEN

Honey bees are large-scale monitoring tools due to their extensive environmental exploration. In their activities and from the hive ecosystem complex, they get in close contact with many organisms whose traces can be transferred into the honey, which can represent an interesting reservoir of environmental DNA (eDNA) signatures and information useful to analyse the honey bee hologenome complexity. In this study, we tested a deep shotgun sequencing approach of honey DNA coupled with a specifically adapted bioinformatic pipeline. This methodology was applied to a few honey samples pointing out DNA sequences from 191 organisms spanning different kingdoms or phyla (viruses, bacteria, plants, fungi, protozoans, arthropods, mammals). Bacteria included the largest number of species. These multi-kingdom signatures listed common hive and honey bee gut microorganisms, honey bee pathogens, parasites and pests, which resembled a complex interplay that might provide a general picture of the honey bee pathosphere. Based on the Apis mellifera filamentous virus genome diversity (the most abundant detected DNA source) we obtained information that could define the origin of the honey at the apiary level. Mining Apis mellifera sequences made it possible to identify the honey bee subspecies both at the mitochondrial and nuclear genome levels.


Asunto(s)
ADN Ambiental/análisis , Miel/análisis , Metagenómica , Animales , Bacterias/genética , Abejas , ADN Ambiental/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Genoma Fúngico/genética , Genoma de Planta/genética , Genoma de Protozoos/genética , Genoma Viral/genética , Análisis de Secuencia de ADN
19.
Genet Sel Evol ; 52(1): 33, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591011

RESUMEN

BACKGROUND: Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are the result of these selection events that have contributed to the adaptation of breeds to different environments and production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds (Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda, Krskopolje pig, Black Slavonian, Turopolje, Moravka, Swallow-Bellied Mangalitsa, Schwäbisch-Hällisches Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European commercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining whole-genome sequencing data obtained by using a DNA-pool sequencing approach. Signatures of selection were identified by using a single-breed approach with two statistics [within-breed pooled heterozygosity (HP) and fixation index (FST)] and group-based FST approaches, which compare groups of breeds defined according to external traits and use/specialization/type. RESULTS: We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared populations and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that are already known or new genes that are under selection and relevant for the domestication process in this species, and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that crossbreeding (accidental or deliberate) occurred with wild boars. CONCLUSIONS: Our findings provide a catalogue of genetic variants of many European pig populations and identify genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources.


Asunto(s)
Técnicas de Genotipaje/métodos , Selección Genética/genética , Porcinos/genética , Aclimatación/genética , Adaptación Fisiológica/genética , Algoritmos , Animales , Cruzamiento , Domesticación , Europa (Continente) , Femenino , Genoma/genética , Genómica/métodos , Genotipo , Masculino , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA