Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cells ; 12(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37759516

RESUMEN

Glucocorticoids (GCs) are commonly used to treat autoimmune and inflammatory diseases, but their clinical effects and long-term use can lead to serious side effects. New drugs that can replace GCs are needed. Glucocorticoid-induced leucine zipper (GILZ) is induced by GCs and mediates many of their anti-inflammatory effects, such as inhibiting the pro-inflammatory molecule NF-κB. The GILZ C-terminal domain (PER region) is responsible for GILZ/p65NF-κB interaction and consequent inhibition of its transcriptional activity. A set of five short peptides spanning different parts of the PER region of GILZ protein was designed, and their anti-inflammatory activity was tested, both in vitro and in vivo. We tested the biological activity of GILZ peptides in human lymphocytic and monocytic cell lines to evaluate their inhibitory effect on the NF-κB-dependent expression of pro-inflammatory cytokines. Among the tested peptides, the peptide named PEP-1 demonstrated the highest efficacy in inhibiting cell activation in vitro. Subsequently, PEP-1 was further evaluated in two in vivo experimental colitis models (chemically induced by DNBS administration and spontaneous colitis induced in IL-10 knock-out (KO) mice (to assess its effectiveness in counteracting inflammation. Results show that PEP-1 reduced disease severity in both colitis models associated with reduced NF-κB pro-inflammatory activity in colon lamina propria lymphocytes. This study explored GILZ-based 'small peptides' potential efficacy in decreasing lymphocyte activation and inflammation associated with experimental inflammatory bowel diseases (IBDs). Small peptides have several advantages over the entire protein, including higher selectivity, better stability, and bioavailability profile, and are easy to synthesize and cost-effective. Thus, identifying active GILZ peptides could represent a new class of drugs for treating IBD patients.

2.
FASEB J ; 35(11): e21950, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34613638

RESUMEN

Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders characterized by relapsing intestinal inflammation, but many details of pathogenesis remain to be fully unraveled. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a mediator of the anti-inflammatory effects of GCs, the most powerful drugs for IBD treatment, but they cause several unwanted side effects. The fusion protein TAT-GILZ has been successfully used in some pre-clinical models of inflammatory and autoimmune diseases. To test the efficacy of TAT-GILZ for treating dextran sulfate sodium (DSS)-induced colitis and explore its impact on the gut microbiome, colitis was induced by DSS in C57BL/6J mice and treated with TAT-GILZ or dexamethasone. Various hallmarks of colitis were analyzed, including disease activity index, gut permeability, and expression of pro-inflammatory cytokines and tight junction proteins. TAT-GILZ treatment showed a therapeutic effect when administered after the onset of colitis. Its efficacy was associated with improved gut permeability, as evidenced by zonula occludens-1 and CD74 upregulation in inflamed colonic tissue. TAT-GILZ also ameliorated the changes in the gut microbiota induced by the DSS, thus potentially providing an optimal environment for colonization of the mucosa surface by beneficial bacteria. Overall, our results demonstrated for the first time that TAT-GILZ treatment proved effective after disease onset allowing restoration of gut permeability, a key pathogenic feature of colitis. Additionally, TAT-GILZ restored gut dysbiosis, thereby contributing to healing mechanisms. Interestingly, we found unprecedented effects of exogenous GILZ that did not overlap with those of GCs.


Asunto(s)
Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Sulfato de Dextran/efectos adversos , Mucosa Intestinal/metabolismo , Permeabilidad/efectos de los fármacos , Proteínas Recombinantes de Fusión/administración & dosificación , Factores de Transcripción/administración & dosificación , Animales , Antiinflamatorios/administración & dosificación , Antígenos de Diferenciación de Linfocitos B/metabolismo , Colitis/metabolismo , Citocinas/metabolismo , Dexametasona/administración & dosificación , Modelos Animales de Enfermedad , Antígenos de Histocompatibilidad Clase II/metabolismo , Mucosa Intestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Transactivadores/genética , Factores de Transcripción/genética , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos , Proteína de la Zonula Occludens-1/metabolismo
3.
Cells ; 10(9)2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34571877

RESUMEN

Glucocorticoids are the most powerful anti-inflammatory and immunosuppressive pharmacological drugs available, despite their adverse effects. Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid-induced gene that shares several anti-inflammatory properties with glucocorticoids. Although immunosuppressive effects of glucocorticoids on neutrophils remain poorly understood, we previously demonstrated that GILZ suppresses neutrophil activation under glucocorticoid treatment. Here, we sought to explore the regulation of Toll-like receptor 2 (TLR2) by the synthetic glucocorticoid dexamethasone (DEX) on neutrophils and the associated GILZ involvement. Peripheral blood neutrophils were isolated from wild type and GILZ-knock-out (KO) mice. TLR2 was found to be downregulated by the in vivo administration of glucocorticoids in wild type but not in GILZ-KO neutrophils, suggesting the involvement of GILZ in TLR2 downregulation. Accordingly, the TLR2-associated anti-fungal activity of neutrophils was reduced by DEX treatment in wild type but not GILZ-KO neutrophils. Furthermore, GILZ did not interact with NF-κB but was found to bind with STAT5, a pivotal factor in the regulation of TLR2 expression. A similar modulation of TLR2 expression, impaired phagocytosis, and killing activity was observed in circulating human neutrophils treated in vitro with DEX. These results demonstrate that glucocorticoids reduce the ability of neutrophils to respond to infections by downregulating TLR2 via GILZ, thereby reducing critical functions.


Asunto(s)
Dexametasona/farmacología , Regulación hacia Abajo/efectos de los fármacos , Neutrófilos/inmunología , Receptor Toll-Like 2/metabolismo , Factores de Transcripción/genética , Animales , Dexametasona/administración & dosificación , Glucocorticoides/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citología , Neutrófilos/metabolismo , Factor de Transcripción STAT5/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos
5.
J Cell Mol Med ; 25(1): 217-228, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33247627

RESUMEN

Poor prognosis in heart failure and the lack of real breakthrough strategies validate targeting myocardial remodelling and the intracellular signalling involved in this process. So far, there are no effective strategies to counteract hypertrophy, an independent predictor of heart failure progression and death. Glucocorticoid-induced leucine zipper (GILZ) is involved in inflammatory signalling, but its role in cardiac biology is unknown. Using GILZ-knockout (KO) mice and an experimental model of hypertrophy and diastolic dysfunction, we addressed the role of GILZ in adverse myocardial remodelling. Infusion of angiotensin II (Ang II) resulted in myocardial dysfunction, inflammation, apoptosis, fibrosis, capillary rarefaction and hypertrophy. Interestingly, GILZ-KO showed more evident diastolic dysfunction and aggravated hypertrophic response compared with WT after Ang II administration. Both cardiomyocyte and left ventricular hypertrophy were more pronounced in GILZ-KO mice. On the other hand, Ang II-induced inflammatory and fibrotic phenomena, cell death and reduction in microvascular density, remained invariant between the WT and KO groups. The analysis of regulators of hypertrophic response, GATA4 and FoxP3, demonstrated an up-regulation in WT mice infused with Ang II; conversely, such an increase did not occur in GILZ-KO hearts. These data on myocardial response to Ang II in mice lacking GILZ indicate that this protein is a new element that can be mechanistically involved in cardiovascular pathology.


Asunto(s)
Diástole , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factores de Transcripción/deficiencia , Angiotensina II , Animales , Presión Sanguínea , Capilares/patología , Muerte Celular , Matriz Extracelular/metabolismo , Fibrosis , Hipertrofia , Hipertrofia Ventricular Izquierda/complicaciones , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Diabetes ; 69(5): 965-980, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32169893

RESUMEN

As an alternative to lifelong insulin supplementation, potentiation of immune tolerance in patients with type 1 diabetes could prevent the autoimmune destruction of pancreatic islet ß-cells. This study was aimed to assess whether the G3c monoclonal antibody (mAb), which triggers the glucocorticoid-induced TNFR-related (Gitr) costimulatory receptor, promotes the expansion of regulatory T cells (Tregs) in SV129 (wild-type) and diabetic-prone NOD mice. The delivery of the G3c mAb via G3C hybridoma cells enveloped in alginate-based microcapsules (G3C/cps) for 3 weeks induced Foxp3+ Treg-cell expansion in the spleen of wild-type mice but not in Gitr-/- mice. G3C/cps also induced the expansion of nonconventional Cd4+Cd25-/lowFoxp3lowGitrint/high (GITR single-positive [sp]) Tregs. Both Cd4+Cd25+GitrhighFoxp3+ and GITRsp Tregs (including also antigen-specific cells) were expanded in the spleen and pancreas of G3C/cps-treated NOD mice, and the number of intact islets was higher in G3C/cps-treated than in empty cps-treated and untreated animals. Consequently, all but two G3C/cps-treated mice did not develop diabetes and all but one survived until the end of the 24-week study. In conclusion, long-term Gitr triggering induces Treg expansion, thereby delaying/preventing diabetes development in NOD mice. This therapeutic approach may have promising clinical potential for the treatment of inflammatory and autoimmune diseases.


Asunto(s)
Anticuerpos Monoclonales , Encapsulación Celular , Diabetes Mellitus Tipo 1/prevención & control , Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Hibridomas , Linfocitos T Reguladores/fisiología , Animales , Proliferación Celular , Ensayo de Inmunoadsorción Enzimática , Femenino , Regulación de la Expresión Génica , Proteína Relacionada con TNFR Inducida por Glucocorticoide/genética , Ratones , Ratones Endogámicos NOD , Ratones Noqueados
7.
Inflamm Bowel Dis ; 26(7): 1017-1025, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31961437

RESUMEN

Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with a complex pathogenesis, affecting people of all ages. They are characterized by alternating phases of clinical relapse and remission, depending on the fine balance between immune cells and the gut microbiota. The cross talk between cells of the immune system and the gut microbiota can result in either tolerance or inflammation, according to multifactorial triggers, ranging from environmental factors to genetic susceptibility. Glucocorticoid (GC) administration remains the first-line treatment for IBDs, although long-term use is limited by development of serious adverse effects. Recently, new alternative pharmacological therapies have been developed, although these are not always effective in IBD patients. There is a constant demand for effective new drug targets to guarantee total remission and improve the quality of life for IBD patients. The glucocorticoid-induced leucine zipper (GILZ) has been implicated as a promising candidate for this purpose, in view of its powerful anti-inflammatory effects that mimic those of GCs while avoiding their unwanted adverse reactions. Here we present and discuss the latest findings about the involvement of GILZ in IBDs.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Factores de Transcripción/farmacología , Descubrimiento de Drogas , Microbioma Gastrointestinal/inmunología , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Inflamación
8.
Front Immunol ; 11: 613435, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584696

RESUMEN

Since their discovery, glucocorticoids (GCs) have been used to treat almost all autoimmune and chronic inflammatory diseases, as well as allergies and some forms of malignancies, because of their immunosuppressive and anti-inflammatory effects. Although GCs provide only symptomatic relief and do not eliminate the cause of the pathology, in the majority of treatments, GCs frequently cannot be replaced by other classes of drugs. Consequently, long-term treatments cause adverse effects that may, in turn, lead to new pathologies that sometimes require the withdrawal of GC therapy. Therefore, thus far, researchers have focused their efforts on molecules that have the same efficacy as that of GCs but cause fewer adverse effects. To this end, some GC-induced proteins, such as glucocorticoid-induced leucine zipper (GILZ), have been used as drugs in mouse models of inflammatory pathologies. In this review, we focus on some important but rare autoimmune and chronic inflammatory diseases for which the biomedical research investment in new therapies is less likely. Additionally, we critically evaluate the possibility of treating such diseases with other drugs, either GC-related or unrelated.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Glucocorticoides/farmacología , Inflamación/tratamiento farmacológico , Animales , Humanos , Leucina Zippers/efectos de los fármacos
9.
Pharmacol Res ; 141: 21-31, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30552973

RESUMEN

Cannabinoids are known to possess anti-inflammatory and immunomodulatory properties, but the mechanisms involved are not fully understood. CB2 is the cannabinoid receptor that is expressed primarily on hematopoietic cells and mediates the immunoregulatory functions of cannabinoids. In order to study the effect of JTE907, a selective/inverse agonist of CB2 with anti-inflammatory properties, on the differentiation of T cell subtypes, we used an in vitro system of Th lineage-specific differentiation of naïve CD4+ T lymphocytes isolated from the mouse spleen. The results indicate that JTE907 was able to induce the differentiation of Th0 cells into the Treg cell phenotype, which was characterized by the expression of FoxP3, TGF-ß and IL-10. P38 phosphorylation and STAT5A activation were found to mediate the signaling pathway triggered by JTE907 via the CB2 receptor in Th0 lymphocytes. In mice with DNBS-induced colitis, JTE907 treatment was able to induce an increase in the number of CD4+CD25+FoxP3+ cells in the lamina propria after 24 h of disease onset and reduce disease severity after 48 h. Further, longer JTE907 treatment resulted in less severe colitis even when administered orally, resulting in less body weight loss, reduction of the disease score, prevention of NF-κB activation, and reduction of the expression of adhesion molecules. Collectively, the results of this study indicate that specific signals delivered through the CB2 receptor can drive the immune response towards the Treg cell phenotype. Thus, ligands such as JTE907 may have use as potential therapeutic agents in autoimmune and inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Colitis/inmunología , Dioxoles/farmacología , Quinolonas/farmacología , Receptor Cannabinoide CB2/inmunología , Linfocitos T/efectos de los fármacos , Animales , Diferenciación Celular , Colitis/patología , Colon/efectos de los fármacos , Colon/patología , Citocinas/inmunología , Modelos Animales de Enfermedad , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Masculino , Ratones Endogámicos C57BL , Fenotipo , Bazo/citología , Linfocitos T/citología , Linfocitos T/inmunología
10.
J Leukoc Biol ; 105(1): 187-194, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30371949

RESUMEN

Glucocorticoid-induced leucine zipper (GILZ) exerts anti-inflammatory effects on the immune cells. However, less is known about GILZ function in neutrophils. We aimed to define the specific role of GILZ in basal neutrophil activity during an inflammatory response. GILZ knockdown resulted in a persistent activation state of neutrophils, as evidenced by increased phagocytosis, killing activity, and oxidative burst in GILZ-knockout (KO) neutrophils. This enhanced response caused severe disease in a dinitrobenzene sulfonic acid (DNBS)-induced colitis model, where GILZ-KO mice had prominent granulocytic infiltrate and excessive inflammatory state. We used a Candida albicans intraperitoneal infection model to unravel the intracellular pathways affected by GILZ expression in activated neutrophils. GILZ-KO neutrophils had stronger ability to clear the infectious agent than the wild-type (WT) neutrophils, and there was more activation of the NOX2 (NADPH oxidase 2) and p47phox proteins, which are directly involved in oxidative burst. Similarly, the MAPK pathway components, that is, ERK and p38, which are involved in the oxidative burst pathway, were highly phosphorylated in GILZ-KO neutrophils. Evaluation of GILZ expression kinetics during C. albicans infection revealed down-regulation that correlated inversely with the state of neutrophil activation, which was evaluated as oxidative burst. Overall, our findings define GILZ as a regulator of neutrophil functions, as its expression contributes to limiting neutrophil activation by reducing the activation of the signaling pathways that control the basal neutrophil functions. Controlling GILZ expression could help regulate a continuous inflammatory state that can result in chronic inflammatory and autoimmune diseases.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Activación Neutrófila , Factores de Transcripción/metabolismo , Animales , Candida albicans/fisiología , Candidiasis/complicaciones , Candidiasis/inmunología , Candidiasis/microbiología , Candidiasis/patología , Colitis/complicaciones , Colitis/inmunología , Colitis/patología , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo , Estallido Respiratorio
11.
Int J Mol Sci ; 19(12)2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30563002

RESUMEN

Glucocorticoids are hormones that regulate several functions in living organisms and synthetic glucocorticoids are the most powerful anti-inflammatory pharmacological tool that is currently available. Although glucocorticoids have an immunosuppressive effect on immune cells, they exert multiple and sometimes contradictory effects on neutrophils. From being extremely sensitive to the anti-inflammatory effects of glucocorticoids to resisting glucocorticoid-induced apoptosis, neutrophils are proving to be more complex than they were earlier thought to be. The aim of this review is to explain these complex pathways by which neutrophils respond to endogenous or to exogenous glucocorticoids, both under physiological and pathological conditions.


Asunto(s)
Antiinflamatorios , Apoptosis , Glucocorticoides , Inmunidad Innata/efectos de los fármacos , Neutrófilos/inmunología , Animales , Antiinflamatorios/inmunología , Antiinflamatorios/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Glucocorticoides/inmunología , Glucocorticoides/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Neutrófilos/patología
12.
A A Pract ; 10(8): 209-211, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29652687

RESUMEN

Ultrasound (US)-guided transversalis fascia plane block (TFPB) was first described by Hebbard as a technique for blockade of T12-L1 nerves. Although this technique appears similar to the quadratus lumborum 1 block, the point of injection is more caudal and anterior, specifically targeting ilioinguinal and iliohypogastric nerves. There are only few published data on US-guided TFPB demonstrating effective postoperative analgesia in iliac crest bone graft harvesting. We report the use of US-guided TFPB in a patient undergoing inguinal herniorrhaphy. Our experience suggests that this technique could represent a viable alternative to general anesthesia and standard regional techniques for inguinal hernia repair.

14.
Pacing Clin Electrophysiol ; 41(5): 517-523, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29493802

RESUMEN

BACKGROUND: The standard technique for implanting a subcutaneous implantable cardioverter defibrillator (S-ICD) requires three incisions and the pocket of the device is created in the subcutaneous tissue of the left lateral thoracic wall. However, a two-incision technique may be adopted, in which the cranial parasternal region is avoided and the device is positioned more deeply, completely under the latissimus dorsi muscle. This can also be combined with ultrasound-guided serratus anterior plane block (US-SAPB) for intraoperative anesthesia and perioperative analgesia. We describe our preliminary experience of US-SAPB combined with the two-incision intermuscular technique. METHODS: We performed US-SAPB 40 minutes before starting the procedure, while the patient was in the supine position. The devices were implanted under the latissimus dorsi muscle. All patients were followed-up after hospital discharge. RESULTS: Twelve patients (male 50%, 53 ± 16 years, body mass index 23 ± 4) underwent the S-ICD implantation with the combined technique. The mean procedure duration was 47 ± 11 minutes. The procedure was successful and a shock energy of 65 J was successful in converting the induced ventricular fibrillation in all patients. The US-SAPB was successful in 92% of cases and only one patient required convertion into general anesthesia due to pain during the procedure. In the postoperative period, patients did not report major discomfort and analgesics were not required. During a median follow-up of 12 months, no complications were reported. CONCLUSIONS: Serratus anterior plane block combined with the intermuscular and two-incision technique proved to be safe and effective during the S-ICD implantation procedure.


Asunto(s)
Desfibriladores Implantables , Músculo Esquelético/cirugía , Implantación de Prótesis/métodos , Pared Torácica/cirugía , Ultrasonografía Intervencional , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
15.
Cell Death Dis ; 9(3): 305, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467389

RESUMEN

Long glucocorticoid-induced leucine zipper (L-GILZ) has recently been implicated in cancer cell proliferation. Here, we investigated its role in human thyroid cancer cells. L-GILZ protein was highly expressed in well-differentiated cancer cells from thyroid cancer patients and differentiated thyroid cancer cell lines, but poorly expressed in anaplastic tumors. A fusion protein containing L-GILZ, when overexpressed in an L-GILZ-deficient 8505C cell line derived from undifferentiated human thyroid cancer tissue, inhibited cellular proliferation in vitro. In addition, when this protein was injected into nude mice, in which cells from line 8505C had been transplanted, xenograft growth was reduced. Since the mitogen-activated protein kinase (MAPK) pathway is frequently hyperactivated in thyroid cancer cells as a result of the BRAFV600E or Ras mutation, we sought to further investigate the role of L-GILZ in the MAPK pathway. To this end, we analyzed L-GILZ expression and function in cells treated with MAPK inhibitors. We used 8505C cells, which have the BRAFV600E mutation, or the CAL-62 cell line, which harbors a Ras mutation. The cells were treated with the BRAF-specific drug vemurafenib (PLX4032) or the MEK1/2 inhibitor, U0126, respectively. Treatment with these agents inhibited MAPK activation, reduced cell proliferation, and upregulated L-GILZ expression. L-GILZ silencing reversed the antiproliferative activity of the MAPK inhibitors, consistent with an antiproliferative role. Treatment with MAPK inhibitors led to the phosphorylation of the cAMP/response element-binding protein (CREB), and active CREB bound to the L-GILZ promoter, contributing to its transcription. We suggest that the CREB signaling pathway, frequently deregulated in thyroid tumors, is involved in L-GILZ upregulation and that L-GILZ regulates thyroid cancer cell proliferation, which may have potential in cancer treatment.


Asunto(s)
Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Factores de Transcripción/metabolismo , Butadienos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Humanos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Inhibidores de Proteínas Quinasas/farmacología , Sorafenib/farmacología , Neoplasias de la Tiroides/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Vemurafenib/farmacología
19.
FASEB J ; 31(7): 3054-3065, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28373208

RESUMEN

The glucocorticoid-induced leucine zipper (GILZ) gene is a pivotal mediator of the anti-inflammatory effects of glucocorticoids (GCs) that are known to regulate the function of both adaptive and innate immunity cells. Our aim was to investigate the role of GILZ in GC-induced inhibition of neutrophil migration, as this role has not been investigated before. We found that GILZ expression was induced by dexamethasone (DEX), a synthetic GC, in neutrophils, and that it regulated migration of these cells into inflamed tissues under DEX treatment. Of note, inhibition of neutrophil migration was not observed in GILZ-knockout mice with peritonitis that were treated by DEX. This was because DEX was unable to up-regulate annexin A1 (Anxa1) expression in the absence of GILZ. Furthermore, we showed that GILZ mediates Anxa1 induction by GCs by transactivating Anxa1 expression at the promoter level via binding with the transcription factor, PU.1. The present findings shed light on the role of GILZ in the mechanism of induction of Anxa1 by GCs. As Anxa1 is an important protein for the resolution of inflammatory response, GILZ may represent a new pharmacologic target for treatment of inflammatory diseases.-Ricci, E., Ronchetti, S., Pericolini, E., Gabrielli, E., Cari, L., Gentili, M., Roselletti, E., Migliorati, G., Vecchiarelli, A., Riccardi, C. Role of the glucocorticoid-induced leucine zipper gene in dexamethasone-induced inhibition of mouse neutrophil migration via control of annexin A1 expression.


Asunto(s)
Anexina A1/metabolismo , Movimiento Celular/fisiología , Dexametasona/farmacología , Neutrófilos/fisiología , Factores de Transcripción/metabolismo , Animales , Anexina A1/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Peritonitis/inducido químicamente , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos
20.
Results Immunol ; 5: 37-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26697291

RESUMEN

Glucocorticoid-Induced Leucine Zipper (GILZ) is a glucocorticoid-inducible gene that mediates glucocorticoid anti-inflammatory effects. GILZ and the isoform L-GILZ are expressed in a variety of cell types, especially of hematopoietic origin, including macrophages, lymphocytes and epithelial cells, and strongly upregulated upon glucocorticoid treatment. A quantitative analysis of GILZ expression in mouse tissues is technically difficult to perform because of the presence of a pseudogene and the high homology of GILZ gene with other genes of TSC22 family. We here propose specific primer pairs to be used in Real Time PCR to avoid unwanted amplification of GILZ pseudogene and TSC-22 family member d1iso3. These primer pairs were used to determine GILZ and L-GILZ expression, in either untreated or in vivo and in vitro dexamethasone-treated tissues. Results indicate that GILZ and L-GILZ are upregulated by glucocorticoids, being GILZ more sensitive to glucocorticoid induction than L-GILZ, but they are differently expressed in all examined tissues, confirming a different role in specific cells. An inappropriate primer pair amplified also GILZ pseudogene and TSC22d1iso3, thus producing misleading results. This quantitative evaluation may be used to better characterize the role of GILZ and L-GILZ in mice and may be translated to humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA