Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Geobiology ; 15(1): 173-183, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27527874

RESUMEN

Hopanes are abundant in ancient sedimentary rocks at discrete intervals in Earth history, yet interpreting their significance in the geologic record is complicated by our incomplete knowledge of what their progenitors, hopanoids, do in modern cells. To date, few studies have addressed the breadth of diversity of physiological functions of these lipids and whether those functions are conserved across the hopanoid-producing bacterial phyla. Here, we generated mutants in the filamentous cyanobacterium, Nostoc punctiforme, that are unable to make all hopanoids (shc) or 2-methylhopanoids (hpnP). While the absence of hopanoids impedes growth of vegetative cells at high temperature, the shc mutant grows faster at low temperature. This finding is consistent with hopanoids acting as membrane rigidifiers, a function shared by other hopanoid-producing phyla. Apart from impacting fitness under temperature stress, hopanoids are dispensable for vegetative cells under other stress conditions. However, hopanoids are required for stress tolerance in akinetes, a resting survival cell type. While 2-methylated hopanoids do not appear to contribute to any stress phenotype, total hopanoids and to a lesser extent 2-methylhopanoids were found to promote the formation of cyanophycin granules in akinetes. Finally, although hopanoids support symbiotic interactions between Alphaproteobacteria and plants, they do not appear to facilitate symbiosis between N. punctiforme and the hornwort Anthoceros punctatus. Collectively, these findings support interpreting hopanes as general environmental stress biomarkers. If hopanoid-mediated enhancement of nitrogen-rich storage products turns out to be a conserved phenomenon in other organisms, a better understanding of this relationship may help us parse the enrichment of 2-methylhopanes in the rock record during episodes of disrupted nutrient cycling.


Asunto(s)
Nostoc/fisiología , Estrés Fisiológico , Triterpenos/metabolismo , Mutación , Nostoc/genética , Nostoc/metabolismo , Nostoc/efectos de la radiación , Temperatura
2.
Geobiology ; 13(3): 267-77, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25630231

RESUMEN

Hopanoids are bacterial steroid-like lipids that can be preserved in the rock record on billion-year timescales. 2-Methylhopanoids are of particular interest to geobiologists because methylation is one of the few chemical modifications that remain after diagenesis and catagenesis. 2-Methylhopanes, the molecular fossils of 2-methylhopanoids, are episodically enriched in the rock record, but we do not have a robust interpretation for their abundance patterns. Here, we exploit the evolutionary record found in molecular sequences from extant organisms to reconstruct the biosynthetic history of 2-methylhopanoids using the C-2 hopanoid methylase, HpnP. Based on HpnP phylogenetic analysis, we find that 2-methylhopanoids originated in a subset of the Alphaproteobacteria. This conclusion is statistically robust and reproducible in multiple trials varying the outgroup, trimming stringency, and ingroup dataset used to infer the evolution of this protein family. The capacity for 2-methylhopanoid production was likely horizontally transferred from the Alphaproteobacteria into the Cyanobacteria after the Cyanobacteria's major divergences. Together, these results suggest that the ancestral function of 2-methylhopanoids was not related to oxygenic photosynthesis but instead to a trait already present in the Alphaproteobacteria. Moreover, given that early 2-methylhopane deposits could have been made solely by Alphaproteobacteria before the acquisition of hpnP by Cyanobacteria, and that the Alphaproteobacteria are thought to be ancestrally aerobic, we infer that 2-methylhopanoids likely arose after the oxygenation of the atmosphere. This finding is consistent with the geologic record-the oldest syngenetic 2-methylhopanes occur after the rise of oxygen, in middle Proterozoic strata of the Barney Creek Formation.


Asunto(s)
Alphaproteobacteria/metabolismo , Fotosíntesis , Filogenia , Triterpenos/metabolismo , Alphaproteobacteria/genética , Evolución Biológica , Cianobacterias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA