RESUMEN
Mitochondria are organelles that regulate essential eukaryotic functions including generating energy, sequestering excess calcium, and modulating cell survival. In order for neurons to thrive, mitochondria have to be continuously replenished by maintaining autophagic-lysosomal mediated degradation of mitochondria (mitophagy) and mitochondrial biogenesis. While a plethora of image- and biochemical-based techniques have been developed for measuring autophagy (macroautophagy) in eukaryotic cells, the molecular toolbox for quantifying and assessing mitophagy in neurons continues to evolve. Compared to proliferating cells, quantifying mitophagy in neurons poses a technical challenge given that mitochondria are predominantly present in neurites (axons and dendrites) and are highly dynamic. In this chapter, we provide a brief overview on mitophagy and provide a list of validated fluorescence- and biochemistry-based techniques used for assessing mitophagy in neuronal cells and primary neurons. Secondly, we provide comprehensive guidelines for interpreting steady-state levels of mitophagy and mitophagic flux in neurons using modern fluorescence- and biochemistry-based techniques. Finally, we provide a comprehensive list of common pitfalls to avoid when assessing mitophagy and offer practical solutions to overcome technical issues.
RESUMEN
Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit ß of PKA (PKA/RIIß) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIß and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dendritas/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Animales , Células COS , Línea Celular , Femenino , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/metabolismo , Transporte de Proteínas/fisiología , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Spatially restricting cAMP production to discrete subcellular locations permits selective regulation of specific functional responses. But exactly where and how cAMP signaling is confined is not fully understood. Different receptors and adenylyl cyclase isoforms responsible for cAMP production are not uniformly distributed between lipid raft and non-lipid raft domains of the plasma membrane. We sought to determine the role that these membrane domains play in organizing cAMP responses in HEK293 cells. The freely diffusible FRET-based biosensor Epac2-camps was used to measure global cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. Disruption of lipid rafts by cholesterol depletion selectively altered cAMP responses produced by raft-associated receptors. The results indicate that receptors associated with lipid raft as well as non-lipid raft domains can contribute to global cAMP responses. In addition, basal cAMP activity was found to be significantly higher in non-raft domains. This was supported by the fact that pharmacologic inhibition of adenylyl cyclase activity reduced basal cAMP activity detected by Epac2-CAAX but not Epac2-MyrPalm or Epac2-camps. Responses detected by Epac2-CAAX were also more sensitive to direct stimulation of adenylyl cyclase activity, but less sensitive to inhibition of phosphodiesterase activity. Quantitative modeling was used to demonstrate that differences in adenylyl cyclase and phosphodiesterase activities are necessary but not sufficient to explain compartmentation of cAMP associated with different microdomains of the plasma membrane.
Asunto(s)
AMP Cíclico/metabolismo , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Técnicas Biosensibles , Línea Celular , Colesterol/química , Humanos , Transducción de SeñalRESUMEN
Focal adhesions are integrin-rich microdomains that structurally link the cytoskeleton to the extracellular matrix and transmit mechanical signals. In the pregnant uterus, increases in integrin expression and activation are thought to be critical for the formation of the mechanical syncytium required for labor. The aim of this study was to determine which integrins are upregulated and localized to focal adhesions in pregnant human myometrium. We used quantitative polymerase chain reaction, Western blotting, and confocal microscopy to determine the expression levels and colocalization with focal adhesion proteins. We observed increases in several integrin transcripts in pregnant myometrium. At the protein level, integrins such as α5-integrin (ITGA5), ITGA7, ITGAV, and ITGB3 were significantly increased during pregnancy. The integrins ITGA3, ITGA5, ITGA7, and ITGB1 colocalized with focal adhesion proteins in term human myometrium. These data suggest that integrins α3ß1, α5ß1, and α7ß1 are the most likely candidates to transmit mechanical signals from the extracellular matrix through focal adhesions in pregnant human myometrium.