Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cryobiology ; 114: 104844, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38171448

RESUMEN

Cryoablation (CA) of solid tumors is highly effective at reducing tumor burden and eliminating small, early stage tumors. However, complete ablation is difficult to achieve and cancer recurrence is a significant barrier to treatment of larger tumors compared to resection. In this study, we explored the relationship between temperature, ice growth, and cell death using a novel in vitro model of clinical CA with the Visual-ICE (Boston Scientific) system, a clinically approved and widely utilized device. We found that increasing the duration of freezing from 1 to 2 min increased ice radius from 3.44 ± 0.13 mm to 5.29 ± 0.16 mm, and decreased the minimum temperature achieved from -22.8 ± 1.3 °C to -45.5 ± 7.9 °C. Furthermore, an additional minute of freezing increased the amount of cell death within a 5 mm radius from 42.5 ± 8.9% to 84.8 ± 1.1%. Freezing at 100% intensity leads to faster temperature drops and a higher level of cell death in the TRAMP-C2 mouse prostate cancer cell line, while lower intensities are useful for slow freezing, but result in less cell death. The width of transition zone between live and dead cells decreased by 0.4 ± 0.2 mm, increasing from one to two cycles of freeze/thaw cycles at 100% intensity. HMGB-1 levels significantly increased with 3 cycles of freeze/thaw compared to the standard 2 cycles. Overall, a longer freezing duration, higher freezing intensity, and more freeze thaw cycles led to higher levels of cancer cell death and smaller transition zones. These results have the potential to inform future preclinical research and to improve therapeutic combinations with CA.


Asunto(s)
Criocirugía , Masculino , Animales , Ratones , Criocirugía/métodos , Criopreservación/métodos , Congelación , Hígado , Muerte Celular
2.
J Biomech ; 162: 111887, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128469

RESUMEN

The high water content of articular cartilage allows this biphasic tissue to withstand large compressive loads through fluid pressurization. The system presented here, termed the "MagnaSquish", provides new capabilities for quantifying the effect of rehydration on cartilage behavior during cyclic loading. An imbalanced rate of fluid exudation during load and fluid re-entry during recovery can lead to the accumulation of strain during successive loading cycles - a phenomenon known as ratcheting. Typical experimental systems for cartilage biomechanics use continuous contact between the platen and sample, which may affect tissue rehydration by compressing the top layer of cartilage and slowing fluid re-entry. To address this limitation, we developed a magnetically actuated device that provides full lift-off of the platen in between loading cycles. We investigated strain accumulation in cadaveric human osteochondral plugs during 750 loading cycles, with two dimensional profiles of the cartilage captured at 30 frames per second throughout loading and 10 min of additional free swelling recovery. Axial and lateral strain measurements were extracted from the tissue profiles using a UNet-based deep learning algorithm to circumvent manual tracing. We observed increased axial strain accumulation with shorter inter-cycle recovery, with static loading serving as the extreme case of zero recovery. The loading waveform during the 750 cycles dictated the pace of the recovery during the extended free swelling period, as shorter inter-cycle recovery led to more persistent axial strain accumulation for up to five minutes. This work showcases the importance of fluid re-entry in resisting strain accumulation during cyclical compression.


Asunto(s)
Cartílago Articular , Humanos , Estrés Mecánico , Presión , Fenómenos Biomecánicos
3.
Tissue Eng Part A ; 26(7-8): 441-449, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31642391

RESUMEN

Osteoarthritis (OA) is a highly prevalent disease with limited treatment options. The search for disease-modifying OA therapies would benefit from a more comprehensive knowledge of the genetic variants that contribute to chondrocyte dysfunction and the barriers to cartilage regeneration. One goal of this study was to establish a system for producing engineered cartilage tissue from genetically defined primary human chondrocytes through genome editing and single-cell expansion. This process was utilized to investigate the functional effect of biallelic knockout of the cell cycle inhibitor p21. The use of ribonucleoprotein (RNP) CRISPR/Cas9 complexes targeting two sites in the coding region of p21 resulted in a high frequency (16%) of colonies with homozygous p21 knockout. Chondrogenic pellet cultures from expanded chondrocytes with complete loss of p21 produced more glycosaminoglycans (GAG) and maintained a higher cell number. Single-cell-derived colonies retained the potential for robust matrix production after expansion, allowing for analysis of colony variability from the same population of targeted cells. The effect of enhanced cartilage matrix production in p21 knockout chondrocytes persisted when matrix production from individual colonies was analyzed. Chondrocytes had lower levels of p21 protein with further expansion, and the difference in GAG production with p21 knockout was strongest at early passages. These results support previous findings that implicate p21 as a barrier to cartilage matrix production and regenerative capacity. Furthermore, this work establishes the use of genome-edited human chondrocytes as a promising approach for engineered tissue models containing user-defined gene knockouts and other genetic variants for investigation of OA pathogenesis. Impact Statement This work provides two important advances to the field of tissue engineering. One is the demonstration that engineered cartilage tissue can be produced from genetically defined populations of primary human chondrocytes. While CRISPR/Cas-9 genome editing has been extensively used in cell lines that divide indefinitely, this work extends the technique to an engineered tissue model system to support investigation of genetic changes that affect cartilage production. A second contribution is the finding that chondrocytes with p21 knockout synthesized more cartilage matrix tissue than unedited controls. This supports the continued investigation of p21 as a potential barrier to effective cartilage regeneration.


Asunto(s)
Condrocitos/citología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ingeniería de Tejidos/métodos , Western Blotting , Condrocitos/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Edición Génica , Glicosaminoglicanos/metabolismo , Humanos , Inmunohistoquímica , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA