Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 10(7): 1837-1851, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29860303

RESUMEN

Alpha satellite is the major repeated DNA element of primate centromeres. Specific evolutionary mechanisms have led to a great diversity of sequence families with peculiar genomic organization and distribution, which have till now been studied mostly in great apes. Using high throughput sequencing of alpha satellite monomers obtained by enzymatic digestion followed by computational and cytogenetic analysis, we compare here the diversity and genomic distribution of alpha satellite DNA in two related Old World monkey species, Cercopithecus pogonias and Cercopithecus solatus, which are known to have diverged about 7 Ma. Two main families of monomers, called C1 and C2, are found in both species. A detailed analysis of our data sets revealed the existence of numerous subfamilies within the centromeric C1 family. Although the most abundant subfamily is conserved between both species, our fluorescence in situ hybridization (FISH) experiments clearly show that some subfamilies are specific for each species and that their distribution is restricted to a subset of chromosomes, thereby pointing to the existence of recurrent amplification/homogenization events. The pericentromeric C2 family is very abundant on the short arm of all acrocentric chromosomes in both species, pointing to specific mechanisms that lead to this distribution. Results obtained using two different restriction enzymes are fully consistent with a predominant monomeric organization of alpha satellite DNA that coexists with higher order organization patterns in the C. pogonias genome. Our study suggests a high dynamics of alpha satellite DNA in Cercopithecini, with recurrent apparition of new sequence variants and interchromosomal sequence transfer.


Asunto(s)
Centrómero/genética , Cercopithecus/genética , ADN Satélite/genética , Animales , Secuencia de Bases , Cercopithecidae/genética , Secuencia de Consenso , Evolución Molecular , Hibridación Fluorescente in Situ , Cariotipo , Masculino , Repeticiones de Minisatélite , Análisis de Secuencia de ADN
2.
BMC Genomics ; 17(1): 916, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27842493

RESUMEN

BACKGROUND: Alpha satellite is the major repeated DNA element of primate centromeres. Evolution of these tandemly repeated sequences has led to the existence of numerous families of monomers exhibiting specific organizational patterns. The limited amount of information available in non-human primates is a restriction to the understanding of the evolutionary dynamics of alpha satellite DNA. RESULTS: We carried out the targeted high-throughput sequencing of alpha satellite monomers and dimers from the Cercopithecus solatus genome, an Old World monkey from the Cercopithecini tribe. Computational approaches were used to infer the existence of sequence families and to study how these families are organized with respect to each other. While previous studies had suggested that alpha satellites in Old World monkeys were poorly diversified, our analysis provides evidence for the existence of at least four distinct families of sequences within the studied species and of higher order organizational patterns. Fluorescence in situ hybridization using oligonucleotide probes that are able to target each family in a specific way showed that the different families had distinct distributions on chromosomes and were not homogeneously distributed between chromosomes. CONCLUSIONS: Our new approach provides an unprecedented and comprehensive view of the diversity and organization of alpha satellites in a species outside the hominoid group. We consider these data with respect to previously known alpha satellite families and to potential mechanisms for satellite DNA evolution. Applying this approach to other species will open new perspectives regarding the integration of satellite DNA into comparative genomic and cytogenetic studies.


Asunto(s)
Cercopithecus/genética , ADN Satélite , Variación Genética , Genoma , Animales , Centrómero , Cromosomas de los Mamíferos , Secuencia de Consenso , Conjuntos de Datos como Asunto , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Fluorescente in Situ , Masculino , Filogenia
3.
Chromosome Res ; 16(5): 783-99, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18679816

RESUMEN

The karyotypes of 28 specimens belonging to 26 species of Cercopithecinae have been compared with each other and with human karyotype by chromosome banding and, for some of them, by Zoo-FISH (human painting probes) techniques. The study includes the first description of the karyotypes of four species and a synonym of Cercopithecus nictitans. The chromosomal homologies obtained provide us with new data on a large number of rearrangements. This allows us to code chromosomal characters to draw Cercopithecini phylogenetic trees, which are compared to phylogenetic data based on DNA sequences. Our findings show that some of the superspecies proposed by Kingdon (1997 The Kingdon Field Guide to African Mammals, Academic Press.) and Groves (2001 Primates Taxonomy, Smithsonian Institution Press) do not form homogeneous groups and that the genus Cercopithecus is paraphyletic, in agreement with previous molecular analyses. The evolution of Cercopithecini karyotypes is mainly due to non-centromeric chromosome fissions and centromeric shifts or inversions. Non-Robertsonian translocations occurred in C. hamlyni and C. neglectus. The position of chromosomal rearrangements in the phylogenetic tree leads us to propose that the Cercopithecini evolution proceeded by either repeated fission events facilitated by peculiar genomic structures or successive reticulate phases, in which heterozygous populations for few rearranged chromosomes were present, allowing the spreading of chromosomal forms in various combinations, before the speciation process.


Asunto(s)
Cercopithecinae/genética , Filogenia , Animales , Evolución Biológica , Bandeo Cromosómico , Humanos , Cariotipificación , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA