RESUMEN
Soil microbial communities host a large number of microbial species that support important ecological functions such as biogeochemical cycling and plant nutrition. The extent and stability of these functions are affected by inter-species interactions among soil microorganisms, yet the different mechanisms underpinning microbial interactions in the soil are not fully understood. Here, we study the extent of nutrient-based interactions among two model, plant-supporting soil microorganisms, the fungi Serendipita indica, and the bacteria Bacillus subtilis. We found that S. indica is unable to grow with nitrate - a common nitrogen source in the soil - but this inability could be rescued, and growth restored in the presence of B. subtilis. We demonstrate that this effect is due to B. subtilis utilising nitrate and releasing ammonia, which can be used by S. indica. We refer to this type of mechanism as ammonia mediated nitrogen sharing (N-sharing). Using a mathematical model, we demonstrated that the pH dependent equilibrium between ammonia (NH3) and ammonium (NH+4) results in an inherent cellular leakiness, and that reduced amonnium uptake or assimilation rates could result in higher levels of leaked ammonia. In line with this model, a mutant B. subtilis - devoid of ammonia uptake - showed higher S. indica growth support in nitrate media. These findings highlight that ammonia based N-sharing can be a previously under-appreciated mechanism underpinning interaction among soil microorganisms and could be influenced by microbial or abiotic alteration of pH in microenvironments.
Asunto(s)
Amoníaco , Bacillus subtilis , Nitratos , Nitrógeno , Microbiología del Suelo , Amoníaco/metabolismo , Nitrógeno/metabolismo , Nitratos/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/genética , Suelo/química , Interacciones Microbianas , Concentración de Iones de Hidrógeno , Compuestos de Amonio/metabolismoRESUMEN
Mitochondria and plastids have both dramatically reduced their genomes since the endosymbiotic events that created them. The similarities and differences in the evolution of the two organelle genome types have been the target of discussion and investigation for decades. Ongoing work has suggested that similar mechanisms may modulate the reductive evolution of the two organelles in a given species, but quantitative data and statistical analyses exploring this picture remain limited outside of some specific cases like parasitism. Here, we use cross-eukaryote organelle genome data to explore evidence for coevolution of mitochondrial and plastid genome reduction. Controlling for differences between clades and pseudoreplication due to relatedness, we find that extents of mtDNA and ptDNA gene retention are related to each other across taxa, in a generally positive correlation that appears to differ quantitatively across eukaryotes, for example, between algal and nonalgal species. We find limited evidence for coevolution of specific mtDNA and ptDNA gene pairs, suggesting that the similarities between the two organelle types may be due mainly to independent responses to consistent evolutionary drivers.
Asunto(s)
Genoma Mitocondrial , Genoma de Plastidios , Plastidios , Plastidios/genética , ADN Mitocondrial/genética , Evolución Molecular , Mitocondrias/genética , Especificidad de la Especie , Evolución Biológica , Eucariontes/genéticaRESUMEN
Comparative analysis of variables across phylogenetically linked observations can reveal mechanisms and insights in evolutionary biology. As the taxonomic breadth of the sample of interest increases, challenges of data sparsity, poor phylogenetic resolution, and complicated evolutionary dynamics emerge. Here, we investigate a cross-eukaryotic question where all these problems exist: which organismal ecology features are correlated with gene retention in mitochondrial and chloroplast DNA (organelle DNA or oDNA). Through a wide palette of synthetic control studies, we first characterize the specificity and sensitivity of a collection of parametric and non-parametric phylogenetic comparative approaches to identify relationships in the face of such sparse and awkward datasets. This analysis is not directly focused on oDNA, and so provides generalizable insights into comparative approaches with challenging data. We then combine and curate ecological data coupled to oDNA genome information across eukaryotes, including a new semi-automated approach for gathering data on organismal traits from less systematized open-access resources including encyclopedia articles on species and taxa. The curation process also involved resolving several issues with existing datasets, including enforcing the clade-specificity of several ecological features and fixing incorrect annotations. Combining this unique dataset with our benchmarked comparative approaches, we confirm support for several known links between organismal ecology and organelle gene retention, identify several previously unidentified relationships constituting possible ecological contributors to oDNA genome evolution, and provide support for a recently hypothesized link between environmental demand and oDNA retention. We, with caution, discuss the implications of these findings for organelle evolution and of this pipeline for broad comparative analyses in other fields.
Asunto(s)
Clasificación , Eucariontes , Filogenia , Eucariontes/genética , Eucariontes/clasificación , Clasificación/métodos , Evolución MolecularRESUMEN
BACKGROUND: Despite the knowledge that the soil-plant-microbiome nexus is shaped by interactions amongst its members, very little is known about how individual symbioses regulate this shaping. Even less is known about how the agriculturally important symbiosis of nitrogen-fixing rhizobia with legumes is impacted according to soil type, yet this knowledge is crucial if we are to harness or improve it. We asked how the plant, soil and microbiome are modulated by symbiosis between the model legume Medicago truncatula and different strains of Sinorhizobium meliloti or Sinorhizobium medicae whose nitrogen-fixing efficiency varies, in three distinct soil types that differ in nutrient fertility, to examine the role of the soil environment upon the plant-microbe interaction during nodulation. RESULTS: The outcome of symbiosis results in installment of a potentially beneficial microbiome that leads to increased nutrient uptake that is not simply proportional to soil nutrient abundance. A number of soil edaphic factors including Zn and Mo, and not just the classical N/P/K nutrients, group with microbial community changes, and alterations in the microbiome can be seen across different soil fertility types. Root endosphere emerged as the plant microhabitat more affected by this rhizobial efficiency-driven community reshaping, manifested by the accumulation of members of the phylum Actinobacteria. The plant in turn plays an active role in regulating its root community, including sanctioning low nitrogen efficiency rhizobial strains, leading to nodule senescence in particular plant-soil-rhizobia strain combinations. CONCLUSIONS: The microbiome-soil-rhizobial dynamic strongly influences plant nutrient uptake and growth, with the endosphere and rhizosphere shaped differentially according to plant-rhizobial interactions with strains that vary in nitrogen-fixing efficiency levels. These results open up the possibility to select inoculation partners best suited for plant, soil type and microbial community. Video Abstract.
Asunto(s)
Medicago truncatula , Rhizobium , Sinorhizobium meliloti , Fijación del Nitrógeno/fisiología , Medicago truncatula/microbiología , Sinorhizobium meliloti/fisiología , Simbiosis/fisiologíaRESUMEN
This article describes a method of manipulating acoustic fields using transmission through foam gratings. The approach is investigated with an analytical model, a numerical model simulating full wave ultrasound propagation through the gratings, and experimental measurements. A grating is demonstrated that mimics a conventional ultrasound lens, modulating the phase of transmitted ultrasound while maximizing the transmitted amplitude. The performance of a foam grating is compared to a lens made of polydimethylsiloxane or three-dimensional printed resin. Using two gratings, independent control of amplitude and phase is demonstrated, with increased insertion loss. The primary advantages of this technique over conventional lenses are very rapid manufacture (<30 min), high repeatability due to the simplicity of manufacture, and the ability to control the amplitude of the transmitted ultrasound. Potential applications include generation of complex ultrasound fields for patient specific treatments in ultrasound therapy.
RESUMEN
Mitochondria and plastids power complex life. Why some genes and not others are retained in their organelle DNA (oDNA) genomes remains a debated question. Here, we attempt to identify the properties of genes and associated underlying mechanisms that determine oDNA retention. We harness over 15k oDNA sequences and over 300 whole genome sequences across eukaryotes with tools from structural biology, bioinformatics, machine learning, and Bayesian model selection. Previously hypothesized features, including the hydrophobicity of a protein product, and less well-known features, including binding energy centrality within a protein complex, predict oDNA retention across eukaryotes, with additional influences of nucleic acid and amino acid biochemistry. Notably, the same features predict retention in both organelles, and retention models learned from one organelle type quantitatively predict retention in the other, supporting the universality of these features-which also distinguish gene profiles in more recent, independent endosymbiotic relationships. A record of this paper's transparent peer review process is included in the supplemental information.
Asunto(s)
Evolución Biológica , Eucariontes , Eucariontes/genética , Teorema de Bayes , Plastidios/genética , Plastidios/metabolismo , Mitocondrias/metabolismoRESUMEN
Legumes house nitrogen-fixing endosymbiotic rhizobia in specialized polyploid cells within root nodules, which undergo tightly regulated metabolic activity. By carrying out expression analysis of transcripts over time in Medicago truncatula nodules, we found that the circadian clock enables coordinated control of metabolic and regulatory processes linked to nitrogen fixation. This involves the circadian clock-associated transcription factor LATE ELONGATED HYPOCOTYL (LHY), with lhy mutants being affected in nodulation. Rhythmic transcripts in root nodules include a subset of nodule-specific cysteine-rich peptides (NCRs) that have the LHY-bound conserved evening element in their promoters. Until now, studies have suggested that NCRs act to regulate bacteroid differentiation and keep the rhizobial population in check. However, these conclusions came from the study of a few members of this very large gene family that has complex diversified spatio-temporal expression. We suggest that rhythmic expression of NCRs may be important for temporal coordination of bacterial activity with the rhythms of the plant host, in order to ensure optimal symbiosis.
Asunto(s)
Relojes Circadianos , Medicago truncatula , Sinorhizobium meliloti , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/metabolismo , Fijación del Nitrógeno/fisiología , Péptidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas/metabolismo , SimbiosisRESUMEN
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant-microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems.
Asunto(s)
Microbiota , Reguladores del Crecimiento de las Plantas/fisiología , Plantas/microbiología , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Microbiota/fisiología , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Rizosfera , Ácido Salicílico/metabolismo , Transducción de SeñalRESUMEN
Cytochrome P450 enzymes catalyse reactions of significant industrial interest but are underutilised in large-scale bioprocesses due to enzyme stability, cofactor requirements and the poor aqueous solubility and microbial toxicity of typical substrates and products. In this work, we investigate the potential for preparative-scale N-demethylation of the opium poppy alkaloid noscapine by a P450BM3 (CYP102A1) mutant enzyme in a whole-cell biotransformation system. We identify and address several common limitations of whole-cell P450 biotransformations using this model N-demethylation process. Mass transfer into Escherichia coli cells was found to be a major limitation of biotransformation rate and an alternative Gram-positive expression host Bacillus megaterium provided a 25-fold improvement in specific initial rate. Two methods were investigated to address poor substrate solubility. First, a biphasic biotransformation system was developed by systematic selection of potentially biocompatible solvents and in silico solubility modelling using Hansen solubility parameters. The best-performing biphasic system gave a 2.3-fold improvement in final product titre compared to a single-phase system but had slower initial rates of biotransformation due to low substrate concentration in the aqueous phase. The second strategy aimed to improve aqueous substrate solubility using cyclodextrin and hydrophilic polymers. This approach provided a fivefold improvement in initial biotransformation rate and allowed a sixfold increase in final product concentration. Enzyme stability and cell viability were identified as the next parameters requiring optimisation to improve productivity. The approaches used are also applicable to the development of other pharmaceutical P450-mediated biotransformations.
Asunto(s)
Biotransformación , Sistema Enzimático del Citocromo P-450/metabolismo , Microbiología Industrial/métodos , Noscapina/química , Bacillus megaterium/metabolismo , Catálisis , Simulación por Computador , Ciclodextrinas/química , Desmetilación , Escherichia coli/metabolismo , Mutación , Compuestos Orgánicos/metabolismo , Oxidación-Reducción , Polímeros/química , Solubilidad , SolventesRESUMEN
An enzymatic biosynthesis approach is described for codeine, the most widely used medicinal opiate, providing a more environmentally sustainable alternative to current chemical conversion, with yields and productivity compatible with industrial production. Escherichia coli strains were engineered to express key enzymes from poppy, including the recently discovered neopinone isomerase, producing codeine from thebaine. We show that compartmentalization of these enzymes in different cells is an effective strategy that allows active spatial and temporal control of reactions, increasing yield and volumetric productivity and reducing byproduct generation. Codeine is produced at a yield of 64% and a volumetric productivity of 0.19 g/(L·h), providing the basis for an industrially applicable aqueous whole-cell biotransformation process. This approach could be used to redirect thebaine-rich feedstocks arising from the U.S. reduction of opioid manufacturing quotas or applied to enable total biosynthesis and may have broader applicability to other medicinal plant compounds.
RESUMEN
Cytochrome P450 enzymes are a promising tool for the late-stage diversification of lead drug candidates and can provide an alternative route to structural modifications that are difficult to achieve with synthetic chemistry. In this study, a library of P450BM3 mutants was produced using site-directed mutagenesis and the enzymes screened for metabolism of the opium poppy alkaloid noscapine, a drug with anticancer activity. Of the 18 enzyme mutants screened, 12 showed an ability to metabolise noscapine that was not present in the wild-type enzyme. Five noscapine metabolites were detected by LC-MS/MS, with the major metabolite for all mutants being N-demethylated noscapine. The highest observed regioselectivity for N-demethylation was 88%. Two hydroxylated metabolites, a catechol and two C-C cleavage products were also detected. P450-mediated production of hydroxylated and N-demethylated noscapine structures may be useful for the development of noscapine analogues with improved biological activity. The variation in substrate turnover, coupling efficiency and product distribution between the active mutants was considered alongside in silico docking experiments to gain insight into structural and functional effects of the introduced mutations. Selected mutants were identified as targets for further mutagenesis to improve activity and when coupled with an optimised process may provide a route for the preparative-scale production of noscapine metabolites.
RESUMEN
We show that oral inoculation of 14 day old conventional piglets with a rough attenuated Salmonella enterica serovar Infantis 1326/28Ф(r) (serogroup C1), 24h prior to oral challenge with S. enterica serovar Typhimurium 4/74 (serogroup B), resulted in significant weight gain (~10%) measured at 14 days post-weaning (38 days of age). Two days after challenge the S. Typhimurium induced stunting and, in some cases loss, of villi but this was prevented by pre-inoculation with the S. Infantis strain. The clinical signs of disease associated with S. Typhimurium 4/74 challenge and faecal shedding were also significantly (P<0.05) reduced by pre-inoculation with the S. Infantis mutant. Pre-inoculation of pigs with the S. Infantis mutant also increased weight gain in pigs challenged with pathogenic Escherichia coli. However, Mycobacterium bovis BCG, an unrelated intracellular bacterium, did not protect against challenge with S. Typhimurium 4/74.
Asunto(s)
Salmonelosis Animal/prevención & control , Salmonella enterica/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria , Aumento de Peso , Administración Oral , Animales , Salmonelosis Animal/microbiología , Salmonella typhimurium/inmunología , Porcinos , Enfermedades de los Porcinos/microbiología , DesteteRESUMEN
RATIONALE: Nasopharyngeal carriage of Streptococcus pneumoniae is a prerequisite for invasive disease, but the majority of carriage episodes are asymptomatic and self-resolving. Interactions determining the development of carriage versus invasive disease are poorly understood but will influence the effectiveness of vaccines or therapeutics that disrupt nasal colonization. OBJECTIVES: We sought to elucidate immunological mechanisms underlying noninvasive pneumococcal nasopharyngeal carriage. METHODS: Pneumococcal interactions with human nasopharyngeal and bronchial fibroblasts and epithelial cells were investigated in vitro. A murine model of nasopharyngeal carriage and an experimental human pneumococcal challenge model were used to characterize immune responses in the airways during carriage. MEASUREMENTS AND MAIN RESULTS: We describe the previously unknown immunological basis of noninvasive carriage and highlight mechanisms whose perturbation may lead to invasive disease. We identify the induction of active transforming growth factor (TGF)-ß1 by S. pneumoniae in human host cells and highlight the key role for TGF-ß1 and T regulatory cells in the establishment and maintenance of nasopharyngeal carriage in mice and humans. We identify the ability of pneumococci to drive TGF-ß1 production from nasopharyngeal cells in vivo and show that an immune tolerance profile, characterized by elevated TGF-ß1 and high nasopharyngeal T regulatory cell numbers, is crucial for prolonged carriage of pneumococci. Blockade of TGF-ß1 signaling prevents prolonged carriage and leads to clearance of pneumococci from the nasopharynx. CONCLUSIONS: These data explain the mechanisms by which S. pneumoniae colonize the human nasopharynx without inducing damaging host inflammation and provide insight into the role of bacterial and host constituents that allow and maintain carriage.
Asunto(s)
Portador Sano/inmunología , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/inmunología , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Animales , Biomarcadores/sangre , Portador Sano/microbiología , Portador Sano/prevención & control , Humanos , Técnicas In Vitro , Ratones , Nasofaringe/inmunología , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/prevención & control , Factores de TiempoRESUMEN
Streptococcus pneumoniae and Listeria monocytogenes, pathogens which can cause severe infectious disease in human, were used to infect properdin-deficient and wildtype mice. The aim was to deduce a role for properdin, positive regulator of the alternative pathway of complement activation, by comparing and contrasting the immune response of the two genotypes in vivo. We show that properdin-deficient and wildtype mice mounted antipneumococcal serotype-specific IgM antibodies, which were protective. Properdin-deficient mice, however, had increased survival in the model of streptococcal pneumonia and sepsis. Low activity of the classical pathway of complement and modulation of FcγR2b expression appear to be pathogenically involved. In listeriosis, however, properdin-deficient mice had reduced survival and a dendritic cell population that was impaired in maturation and activity. In vitro analyses of splenocytes and bone marrow-derived myeloid cells support the view that the opposing outcomes of properdin-deficient and wildtype mice in these two infection models is likely to be due to a skewing of macrophage activity to an M2 phenotype in the properdin-deficient mice. The phenotypes observed thus appear to reflect the extent to which M2- or M1-polarised macrophages are involved in the immune responses to S. pneumoniae and L. monocytogenes. We conclude that properdin controls the strength of immune responses by affecting humoral as well as cellular phenotypes during acute bacterial infection and ensuing inflammation.
Asunto(s)
Listeria monocytogenes/inmunología , Properdina/inmunología , Sepsis/inmunología , Sepsis/patología , Streptococcus pneumoniae/inmunología , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Properdina/deficiencia , Sepsis/microbiología , Análisis de SupervivenciaRESUMEN
Neutrophils and T cells play an important role in host protection against pulmonary infection caused by Streptococcus pneumoniae. However, the role of the integrins in recruitment of these cells to infected lungs is not well understood. In this study we used the twin approaches of mAb blockade and gene-deficient mice to investigate the relative impact of specific integrins on cellular recruitment and bacterial loads following pneumococcal infection. We find that both Mac-1 (CD11b/CD18) and α(4)ß(1) (CD49d/CD29) integrins, but surprisingly not LFA-1 (CD11a/CD18), contribute to two aspects of the response. In terms of recruitment from the circulation into lungs, neutrophils depend on Mac-1 and α(4)ß(1), whereas the T cells are entirely dependent on α(4)ß(1). Second, immunohistochemistry results indicate that adhesion also plays a role within infected lung tissue itself. There is widespread expression of ICAM-1 within lung tissue. Use of ICAM-1(-/-) mice revealed that neutrophils make use of this Mac-1 ligand, not for lung entry or for migration within lung tissue, but for combating the pneumococcal infection. In contrast to ICAM-1, there is restricted and constitutive expression of the α(4)ß(1) ligand, VCAM-1, on the bronchioles, allowing direct access of the leukocytes to the airways via this integrin at an early stage of pneumococcal infection. Therefore, integrins Mac-1 and α(4)ß(1) have a pivotal role in prevention of pneumococcal outgrowth during disease both in regulating neutrophil and T cell recruitment into infected lungs and by influencing their behavior within the lung tissue itself.
Asunto(s)
Integrina alfa4beta1/inmunología , Antígeno de Macrófago-1/inmunología , Infiltración Neutrófila , Neutrófilos/inmunología , Neumonía Neumocócica/inmunología , Streptococcus pneumoniae/inmunología , Linfocitos T/inmunología , Administración Intranasal , Animales , Anticuerpos Monoclonales , Movimiento Celular , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Pulmón/inmunología , Pulmón/microbiología , Antígeno-1 Asociado a Función de Linfocito/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Streptococcus pneumoniae/patogenicidadRESUMEN
The human nasopharynx is an important ecological niche for Streptococcus pneumoniae, and asymptomatic nasopharyngeal carriage is a common precursor to invasive disease. However, knowledge of the immunological events, which occur during carriage, both on a cellular and humoral level, remains limited. Here, we present a long-term stable model of asymptomatic nasopharyngeal carriage using outbred naïve mice, in which we have investigated the effect of previous nasopharyngeal exposure to pneumococci, in the prevention of subsequent carriage and invasive disease. Carriage of D39 wildtype pneumococci restricted to the nasopharynx could be detected for at least 28 days post-infection, whereas nasopharyngeal carriage of a pneumolysin negative isogenic mutant (PLN-A) was cleared in 7-14 days. Both carriage events induced total and capsule specific IgA mucosal antibodies and increased levels of systemic antibodies (IgG against pneumococcal surface protein A (PspA) and IgM capsular polysaccharide), which increased over time and correlated to reduced nasopharyngeal pneumococcal numbers. Prior nasopharyngeal colonisation with PLN-A significantly reduced the duration of subsequent D39 wildtype carriage, and significantly increased survival following invasive pneumococcal challenge. In this case systemic anti-PspA and anti-capsular antibody IgM concentrations showed a strong correlation with reduced bacterial numbers in the lungs and nasopharynx, respectively and also with increased levels of IL17A and CD4+ T cells in lungs of pre-colonised mice. Prior nasopharyngeal colonisation with PLN-A also resulted in significant cross-serotype protection with mice protected from invasive disease with serotype 3 strain (A66) after pre-colonisation with a serotype 2 strain (D39). Our results suggest that both mucosal and systemic antibody as well as cellular host factors have a role in long-term protection against both colonisation and invasive pneumococcal challenge.