RESUMEN
RATIONALE: Boron isotopes are a powerful tool for pH reconstruction in marine carbonates and as a tracer for fluid-mineral interaction in geochemistry. Microanalytical approaches based on laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) often suffer from effects induced by the sample matrix. In this study, we investigate matrix-independent analyses of B isotopic ratios and apply this technique to cold-water corals. METHODS: We employ a customized 193 nm femtosecond laser ablation system (Solstice, Spectra-Physics) coupled to a MC-ICP-MS system (Nu Plasma II, Nu Instruments) equipped with electron multipliers for in situ measurements of B isotopic ratios (11 B/10 B) at the micrometric scale. We analyzed various reference materials of silicate and carbonate matrices using non-matrix matched calibration without employing any correction. This approach was then applied to investigate defined increments in coral samples from a Chilean fjord. RESULTS: We obtained accurate B isotopic ratios with a reproducibility of ±0.9 (2 SD) for various reference materials including silicate glasses (GOR132-G, StHs6/80-G, ATHO-G and NIST SRM 612), clay (IAEA-B-8) and carbonate (JCp-1) using the silicate glass NIST SRM 610 as calibration standard, which shows that neither laser-induced nor ICP-related matrix effects are detectable. The application to cold-water corals (Desmophyllum dianthus) reveals minor intra-skeleton variations in δ11 B with average values between 23.01 and 25.86. CONCLUSIONS: Our instrumental set-up provides accurate and precise B isotopic ratios independently of the sample matrix at the micrometric scale. This approach opens a wide field of application in geochemistry, including pH reconstruction in biogenic carbonates and deciphering processes related to fluid-mineral interaction.
Asunto(s)
Antozoos , Dianthus , Terapia por Láser , Animales , Boro/análisis , Espectrometría de Masas/métodos , Antozoos/química , Reproducibilidad de los Resultados , Isótopos/análisis , Carbonatos/análisis , Rayos Láser , SilicatosRESUMEN
Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum (IMS101) showed that increasing CO(2) partial pressure (pCO(2)) enhances N(2) fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO(2), its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses of Trichodesmium IMS101 grown under a matrix of low and high levels of pCO(2) (150 and 900 microatm) and irradiance (50 and 200 micromol photons m(-2) s(-1)). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO(2) and light levels in the cultures. The pCO(2)-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO(2) stimulated rates of N(2) fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO(2). HCO(3)(-) was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO(2) uptake was enhanced under high pCO(2). A comparison between carbon fluxes in vivo and those derived from (13)C fractionation indicates high internal carbon cycling, especially in the low-pCO(2) treatment under high light. Light-dependent oxygen uptake was only detected under low pCO(2) combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO(2) effect on N(2) fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO(2). These findings are supported by a complementary study looking at photosynthetic fluorescence parameters of photosystem II, photosynthetic unit stoichiometry (photosystem I:photosystem II), and pool sizes of key proteins in carbon and nitrogen acquisition.
Asunto(s)
Dióxido de Carbono/farmacología , Cianobacterias/efectos de los fármacos , Cianobacterias/fisiología , Luz , Fijación del Nitrógeno/efectos de los fármacos , Fijación del Nitrógeno/efectos de la radiación , Carbono/metabolismo , Carbonatos/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/efectos de la radiación , Cianobacterias/crecimiento & desarrollo , Cianobacterias/efectos de la radiación , Elementos Químicos , Oxígeno/metabolismo , Fotosíntesis/efectos de la radiación , Agua de Mar/químicaRESUMEN
Past atmospheric composition can be reconstructed by the analysis of air enclosures in polar ice cores which archive ancient air in decadal to centennial resolution. Due to the different carbon isotopic signatures of different methane sources high-precision measurements of delta13CH4 in ice cores provide clues about the global methane cycle in the past. We developed a highly automated (continuous-flow) gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) technique for ice core samples of approximately 200 g. The methane is melt-extracted using a purge-and-trap method, then separated from the main air constituents, combusted and measured as CO2 by a conventional isotope ratio mass spectrometer. One CO2 working standard, one CH4 and two air reference gases are used to identify potential sources of isotope fractionation within the entire sample preparation process and to enhance the stability, reproducibility and accuracy of the measurement. After correction for gravitational fractionation, pre-industrial air samples from Greenland ice (1831 +/- 40 years) show a delta13C(VPDB) of -49.54 +/- 0.13 per thousand and Antarctic samples (1530 +/- 25 years) show a delta13C(VPDB) of -48.00 +/- 0.12 per thousand in good agreement with published data.
RESUMEN
The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (C(i)) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarima stellaris. In vivo activities of carbonic anhydrase (CA), photosynthetic O(2) evolution and CO(2) and HCO(3)(-) uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (eCA) activities increased with pH in P. multiseries and S. stellaris, N. navis-varingica exhibited low eCA activities independent of pH. Half-saturation concentrations (K(1/2)) for photosynthetic O(2) evolution, which were highest in S. stellaris and lowest in P. multiseries, generally decreased with increasing pH. In terms of carbon source, all species took up both CO(2) and HCO(3)(-). K(1/2) values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO(3)(-) to net fixation was more than 85% in S. stellaris, it was about 55% in P. multiseries and only approximately 30% in N. navis-varingica. The intracellular content of DA increased in P. multiseries and N. navis-varingica with increasing pH. Based on our data, we propose a novel role for eCA acting as C(i)-recycling mechanism. With regard to pH-dependence of growth, the 'HCO(3)(-) user' S. stellaris was as sensitive as the 'CO(2) user' N. navis-varingica. The suggested relationship between DA and carbon acquisition/C(i) limitation could not be confirmed.
Asunto(s)
Carbono/metabolismo , Diatomeas/metabolismo , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Diatomeas/clasificación , Concentración de Iones de Hidrógeno , Ácido Kaínico/análogos & derivados , Ácido Kaínico/metabolismo , Oxígeno/metabolismo , Agua de Mar/química , Especificidad de la EspecieRESUMEN
Carbon acquisition was investigated in three marine bloom-forming dinollagellates-Prorocentrum minimum, Heterocapsa triquetra and Ceratium lineatum. In vivo activities of extracellular and intracellular carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3- uptake rates were measured by membrane inlet mass spectrometry (MIMS) in cells acclimated to low pH (8.0) and high pH (8.5 or 9.1). A second approach used short-term 14C-disequilibrium incubations to estimate the carbon source utilized by the cells. All three species showed negligible extracellular CA (eCA) activity in cells acclimated to low pH and only slightly higher activity when acclimated to high pH. Intracellular CA (iCA) activity was present in all three species, but it increased only in P. minimum with increasing pH. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution were low compared to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics. Moreover, apparent affinities for inorganic carbon (Ci) increased with increasing pH in the acclimation, indicating the operation of an efficient CO2 concentration mechanism (CCM) in these dinoflagellates. Rates of CO2 uptake were comparably low and could not support the observed rates of photosynthesis. Consequently, rates of HCO3- uptake were high in the investigated species, contributing more than 80% of the photosynthetic carbon fixation. The affinity for HCO3- and maximum uptake rates increased under higher pH. The strong preference for HCO3- was also confirmed by the 14C-disequilibrium technique. Modes of carbon acquisition were consistent with the 13C-fractionation pattern observed and indicated a strong species-specific difference in leakage. These results suggest that photosynthesis in marine dinoflagellates is not limited by Ci even at high pH, which may occur during red tides in coastal waters.